Mister Exam

Derivative of lnx*tg4x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(x)*tan(4*x)
$$\log{\left(x \right)} \tan{\left(4 x \right)}$$
log(x)*tan(4*x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. The derivative of is .

    ; to find :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      To find :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      Now plug in to the quotient rule:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
tan(4*x)   /         2     \       
-------- + \4 + 4*tan (4*x)/*log(x)
   x                               
$$\left(4 \tan^{2}{\left(4 x \right)} + 4\right) \log{\left(x \right)} + \frac{\tan{\left(4 x \right)}}{x}$$
The second derivative [src]
               /       2     \                                     
  tan(4*x)   8*\1 + tan (4*x)/      /       2     \                
- -------- + ----------------- + 32*\1 + tan (4*x)/*log(x)*tan(4*x)
      2              x                                             
     x                                                             
$$32 \left(\tan^{2}{\left(4 x \right)} + 1\right) \log{\left(x \right)} \tan{\left(4 x \right)} + \frac{8 \left(\tan^{2}{\left(4 x \right)} + 1\right)}{x} - \frac{\tan{\left(4 x \right)}}{x^{2}}$$
The third derivative [src]
  /             /       2     \      /       2     \                                                       \
  |tan(4*x)   6*\1 + tan (4*x)/   48*\1 + tan (4*x)/*tan(4*x)      /       2     \ /         2     \       |
2*|-------- - ----------------- + --------------------------- + 64*\1 + tan (4*x)/*\1 + 3*tan (4*x)/*log(x)|
  |    3               2                       x                                                           |
  \   x               x                                                                                    /
$$2 \left(64 \left(\tan^{2}{\left(4 x \right)} + 1\right) \left(3 \tan^{2}{\left(4 x \right)} + 1\right) \log{\left(x \right)} + \frac{48 \left(\tan^{2}{\left(4 x \right)} + 1\right) \tan{\left(4 x \right)}}{x} - \frac{6 \left(\tan^{2}{\left(4 x \right)} + 1\right)}{x^{2}} + \frac{\tan{\left(4 x \right)}}{x^{3}}\right)$$