Mister Exam

Derivative of lntg(x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   / 2\\
log\tan\x //
$$\log{\left(\tan{\left(x^{2} \right)} \right)}$$
log(tan(x^2))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. Apply the power rule: goes to

        The result of the chain rule is:

      To find :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. Apply the power rule: goes to

        The result of the chain rule is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
    /       2/ 2\\
2*x*\1 + tan \x //
------------------
        / 2\      
     tan\x /      
$$\frac{2 x \left(\tan^{2}{\left(x^{2} \right)} + 1\right)}{\tan{\left(x^{2} \right)}}$$
The second derivative [src]
                 /                    2 /       2/ 2\\\
  /       2/ 2\\ |   1         2   2*x *\1 + tan \x //|
2*\1 + tan \x //*|------- + 4*x  - -------------------|
                 |   / 2\                   2/ 2\     |
                 \tan\x /                tan \x /     /
$$2 \left(\tan^{2}{\left(x^{2} \right)} + 1\right) \left(- \frac{2 x^{2} \left(\tan^{2}{\left(x^{2} \right)} + 1\right)}{\tan^{2}{\left(x^{2} \right)}} + 4 x^{2} + \frac{1}{\tan{\left(x^{2} \right)}}\right)$$
The third derivative [src]
                   /                                                                               2\
                   |      /       2/ 2\\                     2 /       2/ 2\\      2 /       2/ 2\\ |
    /       2/ 2\\ |    3*\1 + tan \x //      2    / 2\   8*x *\1 + tan \x //   4*x *\1 + tan \x // |
4*x*\1 + tan \x //*|6 - ---------------- + 8*x *tan\x / - ------------------- + --------------------|
                   |           2/ 2\                               / 2\                  3/ 2\      |
                   \        tan \x /                            tan\x /               tan \x /      /
$$4 x \left(\tan^{2}{\left(x^{2} \right)} + 1\right) \left(\frac{4 x^{2} \left(\tan^{2}{\left(x^{2} \right)} + 1\right)^{2}}{\tan^{3}{\left(x^{2} \right)}} - \frac{8 x^{2} \left(\tan^{2}{\left(x^{2} \right)} + 1\right)}{\tan{\left(x^{2} \right)}} + 8 x^{2} \tan{\left(x^{2} \right)} - \frac{3 \left(\tan^{2}{\left(x^{2} \right)} + 1\right)}{\tan^{2}{\left(x^{2} \right)}} + 6\right)$$