Mister Exam

Derivative of lnarcsin2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(asin(2*x))
$$\log{\left(\operatorname{asin}{\left(2 x \right)} \right)}$$
log(asin(2*x))
The graph
The first derivative [src]
           2           
-----------------------
   __________          
  /        2           
\/  1 - 4*x  *asin(2*x)
$$\frac{2}{\sqrt{1 - 4 x^{2}} \operatorname{asin}{\left(2 x \right)}}$$
The second derivative [src]
  /          1                  2*x     \
4*|--------------------- + -------------|
  |/        2\                       3/2|
  |\-1 + 4*x /*asin(2*x)   /       2\   |
  \                        \1 - 4*x /   /
-----------------------------------------
                asin(2*x)                
$$\frac{4 \left(\frac{2 x}{\left(1 - 4 x^{2}\right)^{\frac{3}{2}}} + \frac{1}{\left(4 x^{2} - 1\right) \operatorname{asin}{\left(2 x \right)}}\right)}{\operatorname{asin}{\left(2 x \right)}}$$
The third derivative [src]
  /                                                   2                             \
  |      1                    2                   12*x                 6*x          |
8*|------------- + ------------------------ + ------------- - ----------------------|
  |          3/2             3/2                        5/2              2          |
  |/       2\      /       2\        2        /       2\      /        2\           |
  \\1 - 4*x /      \1 - 4*x /   *asin (2*x)   \1 - 4*x /      \-1 + 4*x / *asin(2*x)/
-------------------------------------------------------------------------------------
                                      asin(2*x)                                      
$$\frac{8 \left(\frac{12 x^{2}}{\left(1 - 4 x^{2}\right)^{\frac{5}{2}}} - \frac{6 x}{\left(4 x^{2} - 1\right)^{2} \operatorname{asin}{\left(2 x \right)}} + \frac{1}{\left(1 - 4 x^{2}\right)^{\frac{3}{2}}} + \frac{2}{\left(1 - 4 x^{2}\right)^{\frac{3}{2}} \operatorname{asin}^{2}{\left(2 x \right)}}\right)}{\operatorname{asin}{\left(2 x \right)}}$$
The graph
Derivative of lnarcsin2x