Mister Exam

Other calculators


tan(x/2)-cot(x/2)

Derivative of tan(x/2)-cot(x/2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /x\      /x\
tan|-| - cot|-|
   \2/      \2/
tan(x2)cot(x2)\tan{\left(\frac{x}{2} \right)} - \cot{\left(\frac{x}{2} \right)}
tan(x/2) - cot(x/2)
Detail solution
  1. Differentiate tan(x2)cot(x2)\tan{\left(\frac{x}{2} \right)} - \cot{\left(\frac{x}{2} \right)} term by term:

    1. Rewrite the function to be differentiated:

      tan(x2)=sin(x2)cos(x2)\tan{\left(\frac{x}{2} \right)} = \frac{\sin{\left(\frac{x}{2} \right)}}{\cos{\left(\frac{x}{2} \right)}}

    2. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=sin(x2)f{\left(x \right)} = \sin{\left(\frac{x}{2} \right)} and g(x)=cos(x2)g{\left(x \right)} = \cos{\left(\frac{x}{2} \right)}.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Let u=x2u = \frac{x}{2}.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddxx2\frac{d}{d x} \frac{x}{2}:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 12\frac{1}{2}

        The result of the chain rule is:

        cos(x2)2\frac{\cos{\left(\frac{x}{2} \right)}}{2}

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Let u=x2u = \frac{x}{2}.

      2. The derivative of cosine is negative sine:

        dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddxx2\frac{d}{d x} \frac{x}{2}:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 12\frac{1}{2}

        The result of the chain rule is:

        sin(x2)2- \frac{\sin{\left(\frac{x}{2} \right)}}{2}

      Now plug in to the quotient rule:

      sin2(x2)2+cos2(x2)2cos2(x2)\frac{\frac{\sin^{2}{\left(\frac{x}{2} \right)}}{2} + \frac{\cos^{2}{\left(\frac{x}{2} \right)}}{2}}{\cos^{2}{\left(\frac{x}{2} \right)}}

    3. The derivative of a constant times a function is the constant times the derivative of the function.

      1. There are multiple ways to do this derivative.

        Method #1

        1. Rewrite the function to be differentiated:

          cot(x2)=1tan(x2)\cot{\left(\frac{x}{2} \right)} = \frac{1}{\tan{\left(\frac{x}{2} \right)}}

        2. Let u=tan(x2)u = \tan{\left(\frac{x}{2} \right)}.

        3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

        4. Then, apply the chain rule. Multiply by ddxtan(x2)\frac{d}{d x} \tan{\left(\frac{x}{2} \right)}:

          1. Let u=x2u = \frac{x}{2}.

          2. ddutan(u)=1cos2(u)\frac{d}{d u} \tan{\left(u \right)} = \frac{1}{\cos^{2}{\left(u \right)}}

          3. Then, apply the chain rule. Multiply by ddxx2\frac{d}{d x} \frac{x}{2}:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: xx goes to 11

              So, the result is: 12\frac{1}{2}

            The result of the chain rule is:

            12cos2(x2)\frac{1}{2 \cos^{2}{\left(\frac{x}{2} \right)}}

          The result of the chain rule is:

          sin2(x2)2+cos2(x2)2cos2(x2)tan2(x2)- \frac{\frac{\sin^{2}{\left(\frac{x}{2} \right)}}{2} + \frac{\cos^{2}{\left(\frac{x}{2} \right)}}{2}}{\cos^{2}{\left(\frac{x}{2} \right)} \tan^{2}{\left(\frac{x}{2} \right)}}

        Method #2

        1. Rewrite the function to be differentiated:

          cot(x2)=cos(x2)sin(x2)\cot{\left(\frac{x}{2} \right)} = \frac{\cos{\left(\frac{x}{2} \right)}}{\sin{\left(\frac{x}{2} \right)}}

        2. Apply the quotient rule, which is:

          ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

          f(x)=cos(x2)f{\left(x \right)} = \cos{\left(\frac{x}{2} \right)} and g(x)=sin(x2)g{\left(x \right)} = \sin{\left(\frac{x}{2} \right)}.

          To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

          1. Let u=x2u = \frac{x}{2}.

          2. The derivative of cosine is negative sine:

            dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

          3. Then, apply the chain rule. Multiply by ddxx2\frac{d}{d x} \frac{x}{2}:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: xx goes to 11

              So, the result is: 12\frac{1}{2}

            The result of the chain rule is:

            sin(x2)2- \frac{\sin{\left(\frac{x}{2} \right)}}{2}

          To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

          1. Let u=x2u = \frac{x}{2}.

          2. The derivative of sine is cosine:

            ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

          3. Then, apply the chain rule. Multiply by ddxx2\frac{d}{d x} \frac{x}{2}:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: xx goes to 11

              So, the result is: 12\frac{1}{2}

            The result of the chain rule is:

            cos(x2)2\frac{\cos{\left(\frac{x}{2} \right)}}{2}

          Now plug in to the quotient rule:

          sin2(x2)2cos2(x2)2sin2(x2)\frac{- \frac{\sin^{2}{\left(\frac{x}{2} \right)}}{2} - \frac{\cos^{2}{\left(\frac{x}{2} \right)}}{2}}{\sin^{2}{\left(\frac{x}{2} \right)}}

      So, the result is: sin2(x2)2+cos2(x2)2cos2(x2)tan2(x2)\frac{\frac{\sin^{2}{\left(\frac{x}{2} \right)}}{2} + \frac{\cos^{2}{\left(\frac{x}{2} \right)}}{2}}{\cos^{2}{\left(\frac{x}{2} \right)} \tan^{2}{\left(\frac{x}{2} \right)}}

    The result is: sin2(x2)2+cos2(x2)2cos2(x2)+sin2(x2)2+cos2(x2)2cos2(x2)tan2(x2)\frac{\frac{\sin^{2}{\left(\frac{x}{2} \right)}}{2} + \frac{\cos^{2}{\left(\frac{x}{2} \right)}}{2}}{\cos^{2}{\left(\frac{x}{2} \right)}} + \frac{\frac{\sin^{2}{\left(\frac{x}{2} \right)}}{2} + \frac{\cos^{2}{\left(\frac{x}{2} \right)}}{2}}{\cos^{2}{\left(\frac{x}{2} \right)} \tan^{2}{\left(\frac{x}{2} \right)}}

  2. Now simplify:

    41cos(2x)\frac{4}{1 - \cos{\left(2 x \right)}}


The answer is:

41cos(2x)\frac{4}{1 - \cos{\left(2 x \right)}}

The graph
02468-8-6-4-2-1010-2000020000
The first derivative [src]
       2/x\      2/x\
    cot |-|   tan |-|
        \2/       \2/
1 + ------- + -------
       2         2   
tan2(x2)2+cot2(x2)2+1\frac{\tan^{2}{\left(\frac{x}{2} \right)}}{2} + \frac{\cot^{2}{\left(\frac{x}{2} \right)}}{2} + 1
The second derivative [src]
/       2/x\\    /x\   /       2/x\\    /x\
|1 + tan |-||*tan|-| - |1 + cot |-||*cot|-|
\        \2//    \2/   \        \2//    \2/
-------------------------------------------
                     2                     
(tan2(x2)+1)tan(x2)(cot2(x2)+1)cot(x2)2\frac{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right) \tan{\left(\frac{x}{2} \right)} - \left(\cot^{2}{\left(\frac{x}{2} \right)} + 1\right) \cot{\left(\frac{x}{2} \right)}}{2}
The third derivative [src]
             2                2                                                    
/       2/x\\    /       2/x\\         2/x\ /       2/x\\        2/x\ /       2/x\\
|1 + cot |-||  + |1 + tan |-||  + 2*cot |-|*|1 + cot |-|| + 2*tan |-|*|1 + tan |-||
\        \2//    \        \2//          \2/ \        \2//         \2/ \        \2//
-----------------------------------------------------------------------------------
                                         4                                         
(tan2(x2)+1)2+2(tan2(x2)+1)tan2(x2)+(cot2(x2)+1)2+2(cot2(x2)+1)cot2(x2)4\frac{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2} + 2 \left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right) \tan^{2}{\left(\frac{x}{2} \right)} + \left(\cot^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2} + 2 \left(\cot^{2}{\left(\frac{x}{2} \right)} + 1\right) \cot^{2}{\left(\frac{x}{2} \right)}}{4}
The graph
Derivative of tan(x/2)-cot(x/2)