Mister Exam

Derivative of ln(x)/(x+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(x)
------
x + 1 
$$\frac{\log{\left(x \right)}}{x + 1}$$
d /log(x)\
--|------|
dx\x + 1 /
$$\frac{d}{d x} \frac{\log{\left(x \right)}}{x + 1}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of is .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
    1        log(x) 
--------- - --------
x*(x + 1)          2
            (x + 1) 
$$- \frac{\log{\left(x \right)}}{\left(x + 1\right)^{2}} + \frac{1}{x \left(x + 1\right)}$$
The second derivative [src]
  1        2       2*log(x)
- -- - --------- + --------
   2   x*(1 + x)          2
  x                (1 + x) 
---------------------------
           1 + x           
$$\frac{\frac{2 \log{\left(x \right)}}{\left(x + 1\right)^{2}} - \frac{2}{x \left(x + 1\right)} - \frac{1}{x^{2}}}{x + 1}$$
The third derivative [src]
2    6*log(x)       3            6     
-- - -------- + ---------- + ----------
 3          3    2                    2
x    (1 + x)    x *(1 + x)   x*(1 + x) 
---------------------------------------
                 1 + x                 
$$\frac{- \frac{6 \log{\left(x \right)}}{\left(x + 1\right)^{3}} + \frac{6}{x \left(x + 1\right)^{2}} + \frac{3}{x^{2} \left(x + 1\right)} + \frac{2}{x^{3}}}{x + 1}$$
The graph
Derivative of ln(x)/(x+1)