Mister Exam

Other calculators

Derivative of (ln(x))/(sqrt(x^2-1))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   log(x)  
-----------
   ________
  /  2     
\/  x  - 1 
$$\frac{\log{\left(x \right)}}{\sqrt{x^{2} - 1}}$$
log(x)/sqrt(x^2 - 1)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of is .

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
      1           x*log(x) 
------------- - -----------
     ________           3/2
    /  2        / 2    \   
x*\/  x  - 1    \x  - 1/   
$$- \frac{x \log{\left(x \right)}}{\left(x^{2} - 1\right)^{\frac{3}{2}}} + \frac{1}{x \sqrt{x^{2} - 1}}$$
The second derivative [src]
                 /          2 \       
                 |       3*x  |       
                 |-1 + -------|*log(x)
                 |           2|       
  1       2      \     -1 + x /       
- -- - ------- + ---------------------
   2         2                2       
  x    -1 + x           -1 + x        
--------------------------------------
                _________             
               /       2              
             \/  -1 + x               
$$\frac{\frac{\left(\frac{3 x^{2}}{x^{2} - 1} - 1\right) \log{\left(x \right)}}{x^{2} - 1} - \frac{2}{x^{2} - 1} - \frac{1}{x^{2}}}{\sqrt{x^{2} - 1}}$$
The third derivative [src]
                     /          2 \       /          2 \       
                     |       3*x  |       |       5*x  |       
                   3*|-1 + -------|   3*x*|-3 + -------|*log(x)
                     |           2|       |           2|       
2         3          \     -1 + x /       \     -1 + x /       
-- + ----------- + ---------------- - -------------------------
 3     /      2\       /      2\                       2       
x    x*\-1 + x /     x*\-1 + x /              /      2\        
                                              \-1 + x /        
---------------------------------------------------------------
                             _________                         
                            /       2                          
                          \/  -1 + x                           
$$\frac{- \frac{3 x \left(\frac{5 x^{2}}{x^{2} - 1} - 3\right) \log{\left(x \right)}}{\left(x^{2} - 1\right)^{2}} + \frac{3 \left(\frac{3 x^{2}}{x^{2} - 1} - 1\right)}{x \left(x^{2} - 1\right)} + \frac{3}{x \left(x^{2} - 1\right)} + \frac{2}{x^{3}}}{\sqrt{x^{2} - 1}}$$