Mister Exam

Other calculators


2^x+e^x

Derivative of 2^x+e^x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 x    x
2  + E 
2x+ex2^{x} + e^{x}
2^x + E^x
Detail solution
  1. Differentiate 2x+ex2^{x} + e^{x} term by term:

    1. ddx2x=2xlog(2)\frac{d}{d x} 2^{x} = 2^{x} \log{\left(2 \right)}

    2. The derivative of exe^{x} is itself.

    The result is: 2xlog(2)+ex2^{x} \log{\left(2 \right)} + e^{x}


The answer is:

2xlog(2)+ex2^{x} \log{\left(2 \right)} + e^{x}

The graph
02468-8-6-4-2-1010025000
The first derivative [src]
 x    x       
E  + 2 *log(2)
2xlog(2)+ex2^{x} \log{\left(2 \right)} + e^{x}
The second derivative [src]
 x    2       x
2 *log (2) + e 
2xlog(2)2+ex2^{x} \log{\left(2 \right)}^{2} + e^{x}
The third derivative [src]
 x    3       x
2 *log (2) + e 
2xlog(2)3+ex2^{x} \log{\left(2 \right)}^{3} + e^{x}
The graph
Derivative of 2^x+e^x