Detail solution
-
Let .
-
The derivative of is .
-
Then, apply the chain rule. Multiply by :
-
Differentiate term by term:
-
The derivative of the constant is zero.
-
Apply the power rule: goes to
The result is:
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$\frac{3 x^{2}}{x^{3} + 2}$$
The second derivative
[src]
/ 3 \
| 3*x |
3*x*|2 - ------|
| 3|
\ 2 + x /
----------------
3
2 + x
$$\frac{3 x \left(- \frac{3 x^{3}}{x^{3} + 2} + 2\right)}{x^{3} + 2}$$
The third derivative
[src]
/ 3 6 \
| 9*x 9*x |
6*|1 - ------ + ---------|
| 3 2|
| 2 + x / 3\ |
\ \2 + x / /
--------------------------
3
2 + x
$$\frac{6 \left(\frac{9 x^{6}}{\left(x^{3} + 2\right)^{2}} - \frac{9 x^{3}}{x^{3} + 2} + 1\right)}{x^{3} + 2}$$