Mister Exam

Other calculators


(ln^7x+ctg5x)^10

Derivative of (ln^7x+ctg5x)^10

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
                    10
/   7              \  
\log (x) + cot(5*x)/  
$$\left(\log{\left(x \right)}^{7} + \cot{\left(5 x \right)}\right)^{10}$$
  /                    10\
d |/   7              \  |
--\\log (x) + cot(5*x)/  /
dx                        
$$\frac{d}{d x} \left(\log{\left(x \right)}^{7} + \cot{\left(5 x \right)}\right)^{10}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of is .

        The result of the chain rule is:

      4. There are multiple ways to do this derivative.

        Method #1

        1. Rewrite the function to be differentiated:

        2. Let .

        3. Apply the power rule: goes to

        4. Then, apply the chain rule. Multiply by :

          1. Rewrite the function to be differentiated:

          2. Apply the quotient rule, which is:

            and .

            To find :

            1. Let .

            2. The derivative of sine is cosine:

            3. Then, apply the chain rule. Multiply by :

              1. The derivative of a constant times a function is the constant times the derivative of the function.

                1. Apply the power rule: goes to

                So, the result is:

              The result of the chain rule is:

            To find :

            1. Let .

            2. The derivative of cosine is negative sine:

            3. Then, apply the chain rule. Multiply by :

              1. The derivative of a constant times a function is the constant times the derivative of the function.

                1. Apply the power rule: goes to

                So, the result is:

              The result of the chain rule is:

            Now plug in to the quotient rule:

          The result of the chain rule is:

        Method #2

        1. Rewrite the function to be differentiated:

        2. Apply the quotient rule, which is:

          and .

          To find :

          1. Let .

          2. The derivative of cosine is negative sine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          To find :

          1. Let .

          2. The derivative of sine is cosine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          Now plug in to the quotient rule:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
                    9 /                           6   \
/   7              \  |            2        70*log (x)|
\log (x) + cot(5*x)/ *|-50 - 50*cot (5*x) + ----------|
                      \                         x     /
$$\left(\log{\left(x \right)}^{7} + \cot{\left(5 x \right)}\right)^{9} \left(\frac{70 \log{\left(x \right)}^{6}}{x} - 50 \cot^{2}{\left(5 x \right)} - 50\right)$$
The second derivative [src]
                         /                               2                                                                                \
                       8 |  /                       6   \                         /       6            5                                 \|
   /   7              \  |  |         2        7*log (x)|    /   7              \ |  7*log (x)   42*log (x)      /       2     \         ||
10*\log (x) + cot(5*x)/ *|9*|5 + 5*cot (5*x) - ---------|  + \log (x) + cot(5*x)/*|- --------- + ---------- + 50*\1 + cot (5*x)/*cot(5*x)||
                         |  \                      x    /                         |       2           2                                  ||
                         \                                                        \      x           x                                   //
$$10 \left(\left(\log{\left(x \right)}^{7} + \cot{\left(5 x \right)}\right) \left(- \frac{7 \log{\left(x \right)}^{6}}{x^{2}} + \frac{42 \log{\left(x \right)}^{5}}{x^{2}} + 50 \left(\cot^{2}{\left(5 x \right)} + 1\right) \cot{\left(5 x \right)}\right) + 9 \left(- \frac{7 \log{\left(x \right)}^{6}}{x} + 5 \cot^{2}{\left(5 x \right)} + 5\right)^{2}\right) \left(\log{\left(x \right)}^{7} + \cot{\left(5 x \right)}\right)^{8}$$
The third derivative [src]
                          /                                3                                                                                                                                                                                                                                         \
                        7 |   /                       6   \                          2 /                   2          4           6            5                                   \                           /                       6   \ /       6            5                                 \|
    /   7              \  |   |         2        7*log (x)|      /   7              \  |    /       2     \    105*log (x)   7*log (x)   63*log (x)          2      /       2     \|      /   7              \ |         2        7*log (x)| |  7*log (x)   42*log (x)      /       2     \         ||
-10*\log (x) + cot(5*x)/ *|72*|5 + 5*cot (5*x) - ---------|  + 2*\log (x) + cot(5*x)/ *|125*\1 + cot (5*x)/  - ----------- - --------- + ---------- + 250*cot (5*x)*\1 + cot (5*x)/| + 27*\log (x) + cot(5*x)/*|5 + 5*cot (5*x) - ---------|*|- --------- + ---------- + 50*\1 + cot (5*x)/*cot(5*x)||
                          |   \                      x    /                            |                             3            3           3                                    |                           \                      x    / |       2           2                                  ||
                          \                                                            \                            x            x           x                                     /                                                         \      x           x                                   //
$$- 10 \left(\log{\left(x \right)}^{7} + \cot{\left(5 x \right)}\right)^{7} \cdot \left(2 \left(\log{\left(x \right)}^{7} + \cot{\left(5 x \right)}\right)^{2} \cdot \left(250 \left(\cot^{2}{\left(5 x \right)} + 1\right) \cot^{2}{\left(5 x \right)} - \frac{7 \log{\left(x \right)}^{6}}{x^{3}} + 125 \left(\cot^{2}{\left(5 x \right)} + 1\right)^{2} + \frac{63 \log{\left(x \right)}^{5}}{x^{3}} - \frac{105 \log{\left(x \right)}^{4}}{x^{3}}\right) + 27 \left(\log{\left(x \right)}^{7} + \cot{\left(5 x \right)}\right) \left(- \frac{7 \log{\left(x \right)}^{6}}{x^{2}} + \frac{42 \log{\left(x \right)}^{5}}{x^{2}} + 50 \left(\cot^{2}{\left(5 x \right)} + 1\right) \cot{\left(5 x \right)}\right) \left(- \frac{7 \log{\left(x \right)}^{6}}{x} + 5 \cot^{2}{\left(5 x \right)} + 5\right) + 72 \left(- \frac{7 \log{\left(x \right)}^{6}}{x} + 5 \cot^{2}{\left(5 x \right)} + 5\right)^{3}\right)$$
The graph
Derivative of (ln^7x+ctg5x)^10