Mister Exam

Other calculators


(ln(3x^4))/(7x^3-9)

Derivative of (ln(3x^4))/(7x^3-9)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   4\
log\3*x /
---------
    3    
 7*x  - 9
$$\frac{\log{\left(3 x^{4} \right)}}{7 x^{3} - 9}$$
  /   /   4\\
d |log\3*x /|
--|---------|
dx|    3    |
  \ 7*x  - 9/
$$\frac{d}{d x} \frac{\log{\left(3 x^{4} \right)}}{7 x^{3} - 9}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                   2    /   4\
     4         21*x *log\3*x /
------------ - ---------------
  /   3    \               2  
x*\7*x  - 9/     /   3    \   
                 \7*x  - 9/   
$$- \frac{21 x^{2} \log{\left(3 x^{4} \right)}}{\left(7 x^{3} - 9\right)^{2}} + \frac{4}{x \left(7 x^{3} - 9\right)}$$
The second derivative [src]
  /                        /           3  \          \
  |                        |       21*x   |    /   4\|
  |                   21*x*|-1 + ---------|*log\3*x /|
  |                        |             3|          |
  |  2       84*x          \     -9 + 7*x /          |
2*|- -- - --------- + -------------------------------|
  |   2           3                      3           |
  \  x    -9 + 7*x               -9 + 7*x            /
------------------------------------------------------
                              3                       
                      -9 + 7*x                        
$$\frac{2 \cdot \left(\frac{21 x \left(\frac{21 x^{3}}{7 x^{3} - 9} - 1\right) \log{\left(3 x^{4} \right)}}{7 x^{3} - 9} - \frac{84 x}{7 x^{3} - 9} - \frac{2}{x^{2}}\right)}{7 x^{3} - 9}$$
The third derivative [src]
  /                                           /           3            6   \          \
  |                     /           3  \      |      126*x       1323*x    |    /   4\|
  |                     |       21*x   |   21*|1 - --------- + ------------|*log\3*x /|
  |                 252*|-1 + ---------|      |            3              2|          |
  |                     |             3|      |    -9 + 7*x    /        3\ |          |
  |4       126          \     -9 + 7*x /      \                \-9 + 7*x / /          |
2*|-- + --------- + -------------------- - -------------------------------------------|
  | 3           3                3                                  3                 |
  \x    -9 + 7*x         -9 + 7*x                           -9 + 7*x                  /
---------------------------------------------------------------------------------------
                                               3                                       
                                       -9 + 7*x                                        
$$\frac{2 \cdot \left(\frac{252 \cdot \left(\frac{21 x^{3}}{7 x^{3} - 9} - 1\right)}{7 x^{3} - 9} - \frac{21 \cdot \left(\frac{1323 x^{6}}{\left(7 x^{3} - 9\right)^{2}} - \frac{126 x^{3}}{7 x^{3} - 9} + 1\right) \log{\left(3 x^{4} \right)}}{7 x^{3} - 9} + \frac{126}{7 x^{3} - 9} + \frac{4}{x^{3}}\right)}{7 x^{3} - 9}$$
The graph
Derivative of (ln(3x^4))/(7x^3-9)