Mister Exam

Other calculators

Derivative of (ln(tan(x)^2+1)-2tanx*atan(tanx)-ln(e^(2x+2)+1)+2*e^(x+1)*atan(e^(x+1)))/2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   2       \                              / 2*x + 2    \      x + 1     / x + 1\
log\tan (x) + 1/ - 2*tan(x)*atan(tan(x)) - log\E        + 1/ + 2*E     *atan\E     /
------------------------------------------------------------------------------------
                                         2                                          
$$\frac{2 e^{x + 1} \operatorname{atan}{\left(e^{x + 1} \right)} + \left(\left(\log{\left(\tan^{2}{\left(x \right)} + 1 \right)} - 2 \tan{\left(x \right)} \operatorname{atan}{\left(\tan{\left(x \right)} \right)}\right) - \log{\left(e^{2 x + 2} + 1 \right)}\right)}{2}$$
(log(tan(x)^2 + 1) - 2*tan(x)*atan(tan(x)) - log(E^(2*x + 2) + 1) + (2*E^(x + 1))*atan(E^(x + 1)))/2
The graph
The first derivative [src]
             2 + 2*x                           /          2   \                   2*x + 2     /         2   \       
            e                / x + 1\  x + 1   \-2 - 2*tan (x)/*atan(tan(x))     e            \2 + 2*tan (x)/*tan(x)
-tan(x) + ------------ + atan\E     /*e      + ----------------------------- - ------------ + ----------------------
               2 + 2*x                                       2                  2*x + 2            /   2       \    
          1 + e                                                                E        + 1      2*\tan (x) + 1/    
$$\frac{\left(- 2 \tan^{2}{\left(x \right)} - 2\right) \operatorname{atan}{\left(\tan{\left(x \right)} \right)}}{2} + e^{x + 1} \operatorname{atan}{\left(e^{x + 1} \right)} - \tan{\left(x \right)} + \frac{\left(2 \tan^{2}{\left(x \right)} + 2\right) \tan{\left(x \right)}}{2 \left(\tan^{2}{\left(x \right)} + 1\right)} + \frac{e^{2 x + 2}}{e^{2 x + 2} + 1} - \frac{e^{2 x + 2}}{e^{2 x + 2} + 1}$$
The second derivative [src]
                   2 + 2*x                                                               
        2         e                 / 1 + x\  1 + x     /       2   \                    
-1 - tan (x) + -------------- + atan\e     /*e      - 2*\1 + tan (x)/*atan(tan(x))*tan(x)
                    2*(1 + x)                                                            
               1 + e                                                                     
$$- 2 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} \operatorname{atan}{\left(\tan{\left(x \right)} \right)} + e^{x + 1} \operatorname{atan}{\left(e^{x + 1} \right)} - \tan^{2}{\left(x \right)} - 1 + \frac{e^{2 x + 2}}{e^{2 \left(x + 1\right)} + 1}$$
The third derivative [src]
                                                              2                       4 + 4*x           2 + 2*x                                         
    / 1 + x\  1 + x     /       2   \            /       2   \                     2*e               3*e                 2    /       2   \             
atan\e     /*e      - 4*\1 + tan (x)/*tan(x) - 2*\1 + tan (x)/ *atan(tan(x)) - ----------------- + -------------- - 4*tan (x)*\1 + tan (x)/*atan(tan(x))
                                                                                               2        2*(1 + x)                                       
                                                                               /     2*(1 + x)\    1 + e                                                
                                                                               \1 + e         /                                                         
$$- 2 \left(\tan^{2}{\left(x \right)} + 1\right)^{2} \operatorname{atan}{\left(\tan{\left(x \right)} \right)} - 4 \left(\tan^{2}{\left(x \right)} + 1\right) \tan^{2}{\left(x \right)} \operatorname{atan}{\left(\tan{\left(x \right)} \right)} - 4 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + e^{x + 1} \operatorname{atan}{\left(e^{x + 1} \right)} + \frac{3 e^{2 x + 2}}{e^{2 \left(x + 1\right)} + 1} - \frac{2 e^{4 x + 4}}{\left(e^{2 \left(x + 1\right)} + 1\right)^{2}}$$