The first derivative
[src]
2 + 2*x / 2 \ 2*x + 2 / 2 \
e / x + 1\ x + 1 \-2 - 2*tan (x)/*atan(tan(x)) e \2 + 2*tan (x)/*tan(x)
-tan(x) + ------------ + atan\E /*e + ----------------------------- - ------------ + ----------------------
2 + 2*x 2 2*x + 2 / 2 \
1 + e E + 1 2*\tan (x) + 1/
$$\frac{\left(- 2 \tan^{2}{\left(x \right)} - 2\right) \operatorname{atan}{\left(\tan{\left(x \right)} \right)}}{2} + e^{x + 1} \operatorname{atan}{\left(e^{x + 1} \right)} - \tan{\left(x \right)} + \frac{\left(2 \tan^{2}{\left(x \right)} + 2\right) \tan{\left(x \right)}}{2 \left(\tan^{2}{\left(x \right)} + 1\right)} + \frac{e^{2 x + 2}}{e^{2 x + 2} + 1} - \frac{e^{2 x + 2}}{e^{2 x + 2} + 1}$$
The second derivative
[src]
2 + 2*x
2 e / 1 + x\ 1 + x / 2 \
-1 - tan (x) + -------------- + atan\e /*e - 2*\1 + tan (x)/*atan(tan(x))*tan(x)
2*(1 + x)
1 + e
$$- 2 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} \operatorname{atan}{\left(\tan{\left(x \right)} \right)} + e^{x + 1} \operatorname{atan}{\left(e^{x + 1} \right)} - \tan^{2}{\left(x \right)} - 1 + \frac{e^{2 x + 2}}{e^{2 \left(x + 1\right)} + 1}$$
The third derivative
[src]
2 4 + 4*x 2 + 2*x
/ 1 + x\ 1 + x / 2 \ / 2 \ 2*e 3*e 2 / 2 \
atan\e /*e - 4*\1 + tan (x)/*tan(x) - 2*\1 + tan (x)/ *atan(tan(x)) - ----------------- + -------------- - 4*tan (x)*\1 + tan (x)/*atan(tan(x))
2 2*(1 + x)
/ 2*(1 + x)\ 1 + e
\1 + e /
$$- 2 \left(\tan^{2}{\left(x \right)} + 1\right)^{2} \operatorname{atan}{\left(\tan{\left(x \right)} \right)} - 4 \left(\tan^{2}{\left(x \right)} + 1\right) \tan^{2}{\left(x \right)} \operatorname{atan}{\left(\tan{\left(x \right)} \right)} - 4 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + e^{x + 1} \operatorname{atan}{\left(e^{x + 1} \right)} + \frac{3 e^{2 x + 2}}{e^{2 \left(x + 1\right)} + 1} - \frac{2 e^{4 x + 4}}{\left(e^{2 \left(x + 1\right)} + 1\right)^{2}}$$