Mister Exam

Other calculators

Derivative of lnsqrt(1-sinx)/(1+sinx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /  ____________\
log\\/ 1 - sin(x) /
-------------------
     1 + sin(x)    
$$\frac{\log{\left(\sqrt{1 - \sin{\left(x \right)}} \right)}}{\sin{\left(x \right)} + 1}$$
log(sqrt(1 - sin(x)))/(1 + sin(x))
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. The derivative of sine is cosine:

            So, the result is:

          The result is:

        The result of the chain rule is:

      The result of the chain rule is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of sine is cosine:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
            /  ____________\                              
  cos(x)*log\\/ 1 - sin(x) /              cos(x)          
- -------------------------- - ---------------------------
                    2          2*(1 - sin(x))*(1 + sin(x))
        (1 + sin(x))                                      
$$- \frac{\log{\left(\sqrt{1 - \sin{\left(x \right)}} \right)} \cos{\left(x \right)}}{\left(\sin{\left(x \right)} + 1\right)^{2}} - \frac{\cos{\left(x \right)}}{2 \left(1 - \sin{\left(x \right)}\right) \left(\sin{\left(x \right)} + 1\right)}$$
The second derivative [src]
       2                 /     2             \                                                 
    cos (x)              |2*cos (x)          |    /  ____________\                             
  ----------- + sin(x)   |---------- + sin(x)|*log\\/ 1 - sin(x) /               2             
  -1 + sin(x)            \1 + sin(x)         /                                cos (x)          
- -------------------- + ----------------------------------------- - --------------------------
    2*(-1 + sin(x))                      1 + sin(x)                  (1 + sin(x))*(-1 + sin(x))
-----------------------------------------------------------------------------------------------
                                           1 + sin(x)                                          
$$\frac{\frac{\left(\sin{\left(x \right)} + \frac{2 \cos^{2}{\left(x \right)}}{\sin{\left(x \right)} + 1}\right) \log{\left(\sqrt{1 - \sin{\left(x \right)}} \right)}}{\sin{\left(x \right)} + 1} - \frac{\sin{\left(x \right)} + \frac{\cos^{2}{\left(x \right)}}{\sin{\left(x \right)} - 1}}{2 \left(\sin{\left(x \right)} - 1\right)} - \frac{\cos^{2}{\left(x \right)}}{\left(\sin{\left(x \right)} - 1\right) \left(\sin{\left(x \right)} + 1\right)}}{\sin{\left(x \right)} + 1}$$
The third derivative [src]
/            2                       /                         2     \                                                                                  \       
|       2*cos (x)        3*sin(x)    |      6*sin(x)      6*cos (x)  |    /  ____________\       /     2              \         /     2             \   |       
|-1 + -------------- + -----------   |-1 + ---------- + -------------|*log\\/ 1 - sin(x) /       |  cos (x)           |         |2*cos (x)          |   |       
|                  2   -1 + sin(x)   |     1 + sin(x)               2|                         3*|----------- + sin(x)|       3*|---------- + sin(x)|   |       
|     (-1 + sin(x))                  \                  (1 + sin(x)) /                           \-1 + sin(x)         /         \1 + sin(x)         /   |       
|--------------------------------- - ----------------------------------------------------- + ---------------------------- + ----------------------------|*cos(x)
\         2*(-1 + sin(x))                                  1 + sin(x)                        2*(1 + sin(x))*(-1 + sin(x))   2*(1 + sin(x))*(-1 + sin(x))/       
----------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                           1 + sin(x)                                                                           
$$\frac{\left(- \frac{\left(-1 + \frac{6 \sin{\left(x \right)}}{\sin{\left(x \right)} + 1} + \frac{6 \cos^{2}{\left(x \right)}}{\left(\sin{\left(x \right)} + 1\right)^{2}}\right) \log{\left(\sqrt{1 - \sin{\left(x \right)}} \right)}}{\sin{\left(x \right)} + 1} + \frac{-1 + \frac{3 \sin{\left(x \right)}}{\sin{\left(x \right)} - 1} + \frac{2 \cos^{2}{\left(x \right)}}{\left(\sin{\left(x \right)} - 1\right)^{2}}}{2 \left(\sin{\left(x \right)} - 1\right)} + \frac{3 \left(\sin{\left(x \right)} + \frac{\cos^{2}{\left(x \right)}}{\sin{\left(x \right)} - 1}\right)}{2 \left(\sin{\left(x \right)} - 1\right) \left(\sin{\left(x \right)} + 1\right)} + \frac{3 \left(\sin{\left(x \right)} + \frac{2 \cos^{2}{\left(x \right)}}{\sin{\left(x \right)} + 1}\right)}{2 \left(\sin{\left(x \right)} - 1\right) \left(\sin{\left(x \right)} + 1\right)}\right) \cos{\left(x \right)}}{\sin{\left(x \right)} + 1}$$