/ ____________\
log\\/ 1 - sin(x) /
-------------------
1 + sin(x)
log(sqrt(1 - sin(x)))/(1 + sin(x))
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of sine is cosine:
So, the result is:
The result is:
The result of the chain rule is:
The result of the chain rule is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of sine is cosine:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
/ ____________\
cos(x)*log\\/ 1 - sin(x) / cos(x)
- -------------------------- - ---------------------------
2 2*(1 - sin(x))*(1 + sin(x))
(1 + sin(x))
2 / 2 \
cos (x) |2*cos (x) | / ____________\
----------- + sin(x) |---------- + sin(x)|*log\\/ 1 - sin(x) / 2
-1 + sin(x) \1 + sin(x) / cos (x)
- -------------------- + ----------------------------------------- - --------------------------
2*(-1 + sin(x)) 1 + sin(x) (1 + sin(x))*(-1 + sin(x))
-----------------------------------------------------------------------------------------------
1 + sin(x)
/ 2 / 2 \ \
| 2*cos (x) 3*sin(x) | 6*sin(x) 6*cos (x) | / ____________\ / 2 \ / 2 \ |
|-1 + -------------- + ----------- |-1 + ---------- + -------------|*log\\/ 1 - sin(x) / | cos (x) | |2*cos (x) | |
| 2 -1 + sin(x) | 1 + sin(x) 2| 3*|----------- + sin(x)| 3*|---------- + sin(x)| |
| (-1 + sin(x)) \ (1 + sin(x)) / \-1 + sin(x) / \1 + sin(x) / |
|--------------------------------- - ----------------------------------------------------- + ---------------------------- + ----------------------------|*cos(x)
\ 2*(-1 + sin(x)) 1 + sin(x) 2*(1 + sin(x))*(-1 + sin(x)) 2*(1 + sin(x))*(-1 + sin(x))/
----------------------------------------------------------------------------------------------------------------------------------------------------------------
1 + sin(x)