/ _________ _____\ log\\/ 2*x - 1 + \/ 2*x /
log(sqrt(2*x - 1) + sqrt(2*x))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
___ ___ 1 \/ 2 *\/ x ----------- + ----------- _________ 2*x \/ 2*x - 1 ------------------------- _________ _____ \/ 2*x - 1 + \/ 2*x
/ 2 \ | / ___\ | | | 2 \/ 2 | | | |------------ + -----| | | ___ | __________ ___| | | 1 \/ 2 \\/ -1 + 2*x \/ x / | -|------------- + ------ + ------------------------------| | 3/2 3/2 / __________ ___ ___\| \(-1 + 2*x) 4*x 4*\\/ -1 + 2*x + \/ 2 *\/ x // ----------------------------------------------------------- __________ ___ ___ \/ -1 + 2*x + \/ 2 *\/ x
3 / ___\ / ___\ / ___\ | 2 \/ 2 | | 2 \/ 2 | | 4 \/ 2 | |------------ + -----| 3*|------------ + -----|*|------------- + -----| | __________ ___| ___ | __________ ___| | 3/2 3/2| 3 \\/ -1 + 2*x \/ x / 3*\/ 2 \\/ -1 + 2*x \/ x / \(-1 + 2*x) x / ------------- + ------------------------------- + ------- + ------------------------------------------------ 5/2 2 5/2 / __________ ___ ___\ (-1 + 2*x) / __________ ___ ___\ 8*x 8*\\/ -1 + 2*x + \/ 2 *\/ x / 4*\\/ -1 + 2*x + \/ 2 *\/ x / ------------------------------------------------------------------------------------------------------------ __________ ___ ___ \/ -1 + 2*x + \/ 2 *\/ x