Mister Exam

Other calculators

Derivative of ln(sqrt(2x-1)+sqrt(2x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /  _________     _____\
log\\/ 2*x - 1  + \/ 2*x /
$$\log{\left(\sqrt{2 x} + \sqrt{2 x - 1} \right)}$$
log(sqrt(2*x - 1) + sqrt(2*x))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          2. The derivative of the constant is zero.

          The result is:

        The result of the chain rule is:

      4. Let .

      5. Apply the power rule: goes to

      6. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
                ___   ___
     1        \/ 2 *\/ x 
----------- + -----------
  _________       2*x    
\/ 2*x - 1               
-------------------------
    _________     _____  
  \/ 2*x - 1  + \/ 2*x   
$$\frac{\frac{1}{\sqrt{2 x - 1}} + \frac{\sqrt{2} \sqrt{x}}{2 x}}{\sqrt{2 x} + \sqrt{2 x - 1}}$$
The second derivative [src]
 /                                                  2    \ 
 |                            /                 ___\     | 
 |                            |     2         \/ 2 |     | 
 |                            |------------ + -----|     | 
 |                  ___       |  __________     ___|     | 
 |      1         \/ 2        \\/ -1 + 2*x    \/ x /     | 
-|------------- + ------ + ------------------------------| 
 |          3/2      3/2     /  __________     ___   ___\| 
 \(-1 + 2*x)      4*x      4*\\/ -1 + 2*x  + \/ 2 *\/ x // 
-----------------------------------------------------------
                   __________     ___   ___                
                 \/ -1 + 2*x  + \/ 2 *\/ x                 
$$- \frac{\frac{\left(\frac{2}{\sqrt{2 x - 1}} + \frac{\sqrt{2}}{\sqrt{x}}\right)^{2}}{4 \left(\sqrt{2} \sqrt{x} + \sqrt{2 x - 1}\right)} + \frac{1}{\left(2 x - 1\right)^{\frac{3}{2}}} + \frac{\sqrt{2}}{4 x^{\frac{3}{2}}}}{\sqrt{2} \sqrt{x} + \sqrt{2 x - 1}}$$
The third derivative [src]
                                          3                                                                 
                    /                 ___\                    /                 ___\ /                  ___\
                    |     2         \/ 2 |                    |     2         \/ 2 | |      4         \/ 2 |
                    |------------ + -----|                  3*|------------ + -----|*|------------- + -----|
                    |  __________     ___|            ___     |  __________     ___| |          3/2     3/2|
      3             \\/ -1 + 2*x    \/ x /        3*\/ 2      \\/ -1 + 2*x    \/ x / \(-1 + 2*x)       x   /
------------- + ------------------------------- + ------- + ------------------------------------------------
          5/2                                 2       5/2              /  __________     ___   ___\         
(-1 + 2*x)        /  __________     ___   ___\     8*x               8*\\/ -1 + 2*x  + \/ 2 *\/ x /         
                4*\\/ -1 + 2*x  + \/ 2 *\/ x /                                                              
------------------------------------------------------------------------------------------------------------
                                           __________     ___   ___                                         
                                         \/ -1 + 2*x  + \/ 2 *\/ x                                          
$$\frac{\frac{3 \left(\frac{4}{\left(2 x - 1\right)^{\frac{3}{2}}} + \frac{\sqrt{2}}{x^{\frac{3}{2}}}\right) \left(\frac{2}{\sqrt{2 x - 1}} + \frac{\sqrt{2}}{\sqrt{x}}\right)}{8 \left(\sqrt{2} \sqrt{x} + \sqrt{2 x - 1}\right)} + \frac{\left(\frac{2}{\sqrt{2 x - 1}} + \frac{\sqrt{2}}{\sqrt{x}}\right)^{3}}{4 \left(\sqrt{2} \sqrt{x} + \sqrt{2 x - 1}\right)^{2}} + \frac{3}{\left(2 x - 1\right)^{\frac{5}{2}}} + \frac{3 \sqrt{2}}{8 x^{\frac{5}{2}}}}{\sqrt{2} \sqrt{x} + \sqrt{2 x - 1}}$$