Mister Exam

Derivative of ln(sin(6x)+3x)+3x+3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(sin(6*x) + 3*x) + 3*x + 3
$$\left(3 x + \log{\left(3 x + \sin{\left(6 x \right)} \right)}\right) + 3$$
log(sin(6*x) + 3*x) + 3*x + 3
Detail solution
  1. Differentiate term by term:

    1. Differentiate term by term:

      1. Let .

      2. The derivative of is .

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. Let .

          2. The derivative of sine is cosine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          4. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result is:

        The result of the chain rule is:

      4. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    2. The derivative of the constant is zero.

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
    3 + 6*cos(6*x)
3 + --------------
    sin(6*x) + 3*x
$$3 + \frac{6 \cos{\left(6 x \right)} + 3}{3 x + \sin{\left(6 x \right)}}$$
The second derivative [src]
   /                             2\
   |             (1 + 2*cos(6*x)) |
-9*|4*sin(6*x) + -----------------|
   \               3*x + sin(6*x) /
-----------------------------------
           3*x + sin(6*x)          
$$- \frac{9 \left(4 \sin{\left(6 x \right)} + \frac{\left(2 \cos{\left(6 x \right)} + 1\right)^{2}}{3 x + \sin{\left(6 x \right)}}\right)}{3 x + \sin{\left(6 x \right)}}$$
The third derivative [src]
   /                              3                              \
   |              (1 + 2*cos(6*x))    6*(1 + 2*cos(6*x))*sin(6*x)|
54*|-4*cos(6*x) + ----------------- + ---------------------------|
   |                              2          3*x + sin(6*x)      |
   \              (3*x + sin(6*x))                               /
------------------------------------------------------------------
                          3*x + sin(6*x)                          
$$\frac{54 \left(- 4 \cos{\left(6 x \right)} + \frac{6 \left(2 \cos{\left(6 x \right)} + 1\right) \sin{\left(6 x \right)}}{3 x + \sin{\left(6 x \right)}} + \frac{\left(2 \cos{\left(6 x \right)} + 1\right)^{3}}{\left(3 x + \sin{\left(6 x \right)}\right)^{2}}\right)}{3 x + \sin{\left(6 x \right)}}$$