/ /2*x + 4\\ log|sin|-------|| \ \2*x + 1//
log(sin((2*x + 4)/(2*x + 1)))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
Now plug in to the quotient rule:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
/ 2 2*(2*x + 4)\ /2*x + 4\ |------- - -----------|*cos|-------| |2*x + 1 2| \2*x + 1/ \ (2*x + 1) / ------------------------------------ /2*x + 4\ sin|-------| \2*x + 1/
/ /2*(2 + x)\ 2/2*(2 + x)\ / 2*(2 + x)\\ | 2*cos|---------| cos |---------|*|1 - ---------|| / 2*(2 + x)\ | 2*(2 + x) \ 1 + 2*x / \ 1 + 2*x / \ 1 + 2*x /| -4*|1 - ---------|*|1 - --------- + ---------------- + -------------------------------| \ 1 + 2*x / | 1 + 2*x /2*(2 + x)\ 2/2*(2 + x)\ | | sin|---------| sin |---------| | \ \ 1 + 2*x / \ 1 + 2*x / / --------------------------------------------------------------------------------------- 2 (1 + 2*x)
/ 2 2 \ | /2*(2 + x)\ / 2*(2 + x)\ 3/2*(2 + x)\ / 2*(2 + x)\ /2*(2 + x)\ 2/2*(2 + x)\ / 2*(2 + x)\| | 3*cos|---------| |1 - ---------| *cos |---------| |1 - ---------| *cos|---------| 3*cos |---------|*|1 - ---------|| / 2*(2 + x)\ | 6*(2 + x) \ 1 + 2*x / \ 1 + 2*x / \ 1 + 2*x / \ 1 + 2*x / \ 1 + 2*x / \ 1 + 2*x / \ 1 + 2*x /| 16*|1 - ---------|*|3 - --------- + ---------------- + -------------------------------- + ------------------------------- + ---------------------------------| \ 1 + 2*x / | 1 + 2*x /2*(2 + x)\ 3/2*(2 + x)\ /2*(2 + x)\ 2/2*(2 + x)\ | | sin|---------| sin |---------| sin|---------| sin |---------| | \ \ 1 + 2*x / \ 1 + 2*x / \ 1 + 2*x / \ 1 + 2*x / / -------------------------------------------------------------------------------------------------------------------------------------------------------------- 3 (1 + 2*x)