Mister Exam

Other calculators

Derivative of ln(sin((2x+4)/(2x+1)))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   /2*x + 4\\
log|sin|-------||
   \   \2*x + 1//
$$\log{\left(\sin{\left(\frac{2 x + 4}{2 x + 1} \right)} \right)}$$
log(sin((2*x + 4)/(2*x + 1)))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Apply the quotient rule, which is:

        and .

        To find :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result is:

        To find :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result is:

        Now plug in to the quotient rule:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
/   2      2*(2*x + 4)\    /2*x + 4\
|------- - -----------|*cos|-------|
|2*x + 1             2|    \2*x + 1/
\           (2*x + 1) /             
------------------------------------
               /2*x + 4\            
            sin|-------|            
               \2*x + 1/            
$$\frac{\left(\frac{2}{2 x + 1} - \frac{2 \left(2 x + 4\right)}{\left(2 x + 1\right)^{2}}\right) \cos{\left(\frac{2 x + 4}{2 x + 1} \right)}}{\sin{\left(\frac{2 x + 4}{2 x + 1} \right)}}$$
The second derivative [src]
                   /                     /2*(2 + x)\      2/2*(2 + x)\ /    2*(2 + x)\\
                   |                2*cos|---------|   cos |---------|*|1 - ---------||
   /    2*(2 + x)\ |    2*(2 + x)        \ 1 + 2*x /       \ 1 + 2*x / \     1 + 2*x /|
-4*|1 - ---------|*|1 - --------- + ---------------- + -------------------------------|
   \     1 + 2*x / |     1 + 2*x        /2*(2 + x)\               2/2*(2 + x)\        |
                   |                 sin|---------|            sin |---------|        |
                   \                    \ 1 + 2*x /                \ 1 + 2*x /        /
---------------------------------------------------------------------------------------
                                                2                                      
                                       (1 + 2*x)                                       
$$- \frac{4 \left(- \frac{2 \left(x + 2\right)}{2 x + 1} + 1\right) \left(- \frac{2 \left(x + 2\right)}{2 x + 1} + \frac{\left(- \frac{2 \left(x + 2\right)}{2 x + 1} + 1\right) \cos^{2}{\left(\frac{2 \left(x + 2\right)}{2 x + 1} \right)}}{\sin^{2}{\left(\frac{2 \left(x + 2\right)}{2 x + 1} \right)}} + 1 + \frac{2 \cos{\left(\frac{2 \left(x + 2\right)}{2 x + 1} \right)}}{\sin{\left(\frac{2 \left(x + 2\right)}{2 x + 1} \right)}}\right)}{\left(2 x + 1\right)^{2}}$$
The third derivative [src]
                   /                                                  2                                  2                                                   \
                   |                     /2*(2 + x)\   /    2*(2 + x)\     3/2*(2 + x)\   /    2*(2 + x)\     /2*(2 + x)\        2/2*(2 + x)\ /    2*(2 + x)\|
                   |                3*cos|---------|   |1 - ---------| *cos |---------|   |1 - ---------| *cos|---------|   3*cos |---------|*|1 - ---------||
   /    2*(2 + x)\ |    6*(2 + x)        \ 1 + 2*x /   \     1 + 2*x /      \ 1 + 2*x /   \     1 + 2*x /     \ 1 + 2*x /         \ 1 + 2*x / \     1 + 2*x /|
16*|1 - ---------|*|3 - --------- + ---------------- + -------------------------------- + ------------------------------- + ---------------------------------|
   \     1 + 2*x / |     1 + 2*x        /2*(2 + x)\               3/2*(2 + x)\                        /2*(2 + x)\                       2/2*(2 + x)\         |
                   |                 sin|---------|            sin |---------|                     sin|---------|                    sin |---------|         |
                   \                    \ 1 + 2*x /                \ 1 + 2*x /                        \ 1 + 2*x /                        \ 1 + 2*x /         /
--------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                   3                                                                          
                                                                          (1 + 2*x)                                                                           
$$\frac{16 \left(- \frac{2 \left(x + 2\right)}{2 x + 1} + 1\right) \left(- \frac{6 \left(x + 2\right)}{2 x + 1} + \frac{\left(- \frac{2 \left(x + 2\right)}{2 x + 1} + 1\right)^{2} \cos{\left(\frac{2 \left(x + 2\right)}{2 x + 1} \right)}}{\sin{\left(\frac{2 \left(x + 2\right)}{2 x + 1} \right)}} + \frac{\left(- \frac{2 \left(x + 2\right)}{2 x + 1} + 1\right)^{2} \cos^{3}{\left(\frac{2 \left(x + 2\right)}{2 x + 1} \right)}}{\sin^{3}{\left(\frac{2 \left(x + 2\right)}{2 x + 1} \right)}} + \frac{3 \left(- \frac{2 \left(x + 2\right)}{2 x + 1} + 1\right) \cos^{2}{\left(\frac{2 \left(x + 2\right)}{2 x + 1} \right)}}{\sin^{2}{\left(\frac{2 \left(x + 2\right)}{2 x + 1} \right)}} + 3 + \frac{3 \cos{\left(\frac{2 \left(x + 2\right)}{2 x + 1} \right)}}{\sin{\left(\frac{2 \left(x + 2\right)}{2 x + 1} \right)}}\right)}{\left(2 x + 1\right)^{3}}$$