Mister Exam

Derivative of ln(secx+tanx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(sec(x) + tan(x))
$$\log{\left(\tan{\left(x \right)} + \sec{\left(x \right)} \right)}$$
log(sec(x) + tan(x))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Rewrite the function to be differentiated:

      2. Let .

      3. Apply the power rule: goes to

      4. Then, apply the chain rule. Multiply by :

        1. The derivative of cosine is negative sine:

        The result of the chain rule is:

      5. Rewrite the function to be differentiated:

      6. Apply the quotient rule, which is:

        and .

        To find :

        1. The derivative of sine is cosine:

        To find :

        1. The derivative of cosine is negative sine:

        Now plug in to the quotient rule:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
       2                   
1 + tan (x) + sec(x)*tan(x)
---------------------------
      sec(x) + tan(x)      
$$\frac{\tan^{2}{\left(x \right)} + \tan{\left(x \right)} \sec{\left(x \right)} + 1}{\tan{\left(x \right)} + \sec{\left(x \right)}}$$
The second derivative [src]
                                                                     2                         
                                        /       2                   \                          
   2             /       2   \          \1 + tan (x) + sec(x)*tan(x)/      /       2   \       
tan (x)*sec(x) + \1 + tan (x)/*sec(x) - ------------------------------ + 2*\1 + tan (x)/*tan(x)
                                               sec(x) + tan(x)                                 
-----------------------------------------------------------------------------------------------
                                        sec(x) + tan(x)                                        
$$\frac{2 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + \left(\tan^{2}{\left(x \right)} + 1\right) \sec{\left(x \right)} + \tan^{2}{\left(x \right)} \sec{\left(x \right)} - \frac{\left(\tan^{2}{\left(x \right)} + \tan{\left(x \right)} \sec{\left(x \right)} + 1\right)^{2}}{\tan{\left(x \right)} + \sec{\left(x \right)}}}{\tan{\left(x \right)} + \sec{\left(x \right)}}$$
The third derivative [src]
                                                                   3                                                                                                                                                             
               2                      /       2                   \                                /       2                   \ /   2             /       2   \            /       2   \       \                                
  /       2   \       3             2*\1 + tan (x) + sec(x)*tan(x)/         2    /       2   \   3*\1 + tan (x) + sec(x)*tan(x)/*\tan (x)*sec(x) + \1 + tan (x)/*sec(x) + 2*\1 + tan (x)/*tan(x)/     /       2   \              
2*\1 + tan (x)/  + tan (x)*sec(x) + -------------------------------- + 4*tan (x)*\1 + tan (x)/ - ------------------------------------------------------------------------------------------------ + 5*\1 + tan (x)/*sec(x)*tan(x)
                                                            2                                                                            sec(x) + tan(x)                                                                         
                                           (sec(x) + tan(x))                                                                                                                                                                     
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                         sec(x) + tan(x)                                                                                                         
$$\frac{2 \left(\tan^{2}{\left(x \right)} + 1\right)^{2} + 4 \left(\tan^{2}{\left(x \right)} + 1\right) \tan^{2}{\left(x \right)} + 5 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} \sec{\left(x \right)} + \tan^{3}{\left(x \right)} \sec{\left(x \right)} - \frac{3 \left(2 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + \left(\tan^{2}{\left(x \right)} + 1\right) \sec{\left(x \right)} + \tan^{2}{\left(x \right)} \sec{\left(x \right)}\right) \left(\tan^{2}{\left(x \right)} + \tan{\left(x \right)} \sec{\left(x \right)} + 1\right)}{\tan{\left(x \right)} + \sec{\left(x \right)}} + \frac{2 \left(\tan^{2}{\left(x \right)} + \tan{\left(x \right)} \sec{\left(x \right)} + 1\right)^{3}}{\left(\tan{\left(x \right)} + \sec{\left(x \right)}\right)^{2}}}{\tan{\left(x \right)} + \sec{\left(x \right)}}$$
The graph
Derivative of ln(secx+tanx)