log(sec(x) + tan(x))
log(sec(x) + tan(x))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Rewrite the function to be differentiated:
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of cosine is negative sine:
The result of the chain rule is:
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
2 1 + tan (x) + sec(x)*tan(x) --------------------------- sec(x) + tan(x)
2 / 2 \ 2 / 2 \ \1 + tan (x) + sec(x)*tan(x)/ / 2 \ tan (x)*sec(x) + \1 + tan (x)/*sec(x) - ------------------------------ + 2*\1 + tan (x)/*tan(x) sec(x) + tan(x) ----------------------------------------------------------------------------------------------- sec(x) + tan(x)
3 2 / 2 \ / 2 \ / 2 / 2 \ / 2 \ \ / 2 \ 3 2*\1 + tan (x) + sec(x)*tan(x)/ 2 / 2 \ 3*\1 + tan (x) + sec(x)*tan(x)/*\tan (x)*sec(x) + \1 + tan (x)/*sec(x) + 2*\1 + tan (x)/*tan(x)/ / 2 \ 2*\1 + tan (x)/ + tan (x)*sec(x) + -------------------------------- + 4*tan (x)*\1 + tan (x)/ - ------------------------------------------------------------------------------------------------ + 5*\1 + tan (x)/*sec(x)*tan(x) 2 sec(x) + tan(x) (sec(x) + tan(x)) --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- sec(x) + tan(x)