Mister Exam

Other calculators

Derivative of ln(1+3*x)/((3*x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(1 + 3*x)
------------
    3*x     
$$\frac{\log{\left(3 x + 1 \right)}}{3 x}$$
log(1 + 3*x)/((3*x))
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    To find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: goes to

      So, the result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
    1                 
 3*---                
   3*x    log(1 + 3*x)
------- - ------------
1 + 3*x          2    
              3*x     
$$\frac{3 \frac{1}{3 x}}{3 x + 1} - \frac{\log{\left(3 x + 1 \right)}}{3 x^{2}}$$
The second derivative [src]
      3             2        2*log(1 + 3*x)
- ---------- - ----------- + --------------
           2   x*(1 + 3*x)           2     
  (1 + 3*x)                       3*x      
-------------------------------------------
                     x                     
$$\frac{- \frac{3}{\left(3 x + 1\right)^{2}} - \frac{2}{x \left(3 x + 1\right)} + \frac{2 \log{\left(3 x + 1 \right)}}{3 x^{2}}}{x}$$
The third derivative [src]
    18       2*log(1 + 3*x)        6              9      
---------- - -------------- + ------------ + ------------
         3          3          2                        2
(1 + 3*x)          x          x *(1 + 3*x)   x*(1 + 3*x) 
---------------------------------------------------------
                            x                            
$$\frac{\frac{18}{\left(3 x + 1\right)^{3}} + \frac{9}{x \left(3 x + 1\right)^{2}} + \frac{6}{x^{2} \left(3 x + 1\right)} - \frac{2 \log{\left(3 x + 1 \right)}}{x^{3}}}{x}$$