/1 - x\ log|-----| \1 + x/
log((1 - x)/(1 + x))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
/ 1 1 - x \
(1 + x)*|- ----- - --------|
| 1 + x 2|
\ (1 + x) /
----------------------------
1 - x
/ -1 + x\ / 1 1 \
|-1 + ------|*|----- + ------|
\ 1 + x / \1 + x -1 + x/
------------------------------
-1 + x
/ -1 + x\ / 1 1 1 \
2*|-1 + ------|*|- -------- - --------- - ----------------|
\ 1 + x / | 2 2 (1 + x)*(-1 + x)|
\ (1 + x) (-1 + x) /
-----------------------------------------------------------
-1 + x
/ -1 + x\ / 1 1 1 \
2*|-1 + ------|*|- -------- - --------- - ----------------|
\ 1 + x / | 2 2 (1 + x)*(-1 + x)|
\ (1 + x) (-1 + x) /
-----------------------------------------------------------
-1 + x