Mister Exam

Derivative of ln((1-x)/(1+x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /1 - x\
log|-----|
   \1 + x/
$$\log{\left(\frac{1 - x}{x + 1} \right)}$$
log((1 - x)/(1 + x))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
        /    1      1 - x  \
(1 + x)*|- ----- - --------|
        |  1 + x          2|
        \          (1 + x) /
----------------------------
           1 - x            
$$\frac{\left(x + 1\right) \left(- \frac{1 - x}{\left(x + 1\right)^{2}} - \frac{1}{x + 1}\right)}{1 - x}$$
The second derivative [src]
/     -1 + x\ /  1       1   \
|-1 + ------|*|----- + ------|
\     1 + x / \1 + x   -1 + x/
------------------------------
            -1 + x            
$$\frac{\left(\frac{x - 1}{x + 1} - 1\right) \left(\frac{1}{x + 1} + \frac{1}{x - 1}\right)}{x - 1}$$
3-я производная [src]
  /     -1 + x\ /     1           1              1        \
2*|-1 + ------|*|- -------- - --------- - ----------------|
  \     1 + x / |         2           2   (1 + x)*(-1 + x)|
                \  (1 + x)    (-1 + x)                    /
-----------------------------------------------------------
                           -1 + x                          
$$\frac{2 \left(\frac{x - 1}{x + 1} - 1\right) \left(- \frac{1}{\left(x + 1\right)^{2}} - \frac{1}{\left(x - 1\right) \left(x + 1\right)} - \frac{1}{\left(x - 1\right)^{2}}\right)}{x - 1}$$
The third derivative [src]
  /     -1 + x\ /     1           1              1        \
2*|-1 + ------|*|- -------- - --------- - ----------------|
  \     1 + x / |         2           2   (1 + x)*(-1 + x)|
                \  (1 + x)    (-1 + x)                    /
-----------------------------------------------------------
                           -1 + x                          
$$\frac{2 \left(\frac{x - 1}{x + 1} - 1\right) \left(- \frac{1}{\left(x + 1\right)^{2}} - \frac{1}{\left(x - 1\right) \left(x + 1\right)} - \frac{1}{\left(x - 1\right)^{2}}\right)}{x - 1}$$