Mister Exam

Derivative of ln(1-sin(2x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(1 - sin(2*x))
$$\log{\left(- \sin{\left(2 x \right)} + 1 \right)}$$
d                    
--(log(1 - sin(2*x)))
dx                   
$$\frac{d}{d x} \log{\left(- \sin{\left(2 x \right)} + 1 \right)}$$
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
-2*cos(2*x) 
------------
1 - sin(2*x)
$$- \frac{2 \cos{\left(2 x \right)}}{- \sin{\left(2 x \right)} + 1}$$
The second derivative [src]
   /     2                  \
   |  cos (2*x)             |
-4*|------------- + sin(2*x)|
   \-1 + sin(2*x)           /
-----------------------------
        -1 + sin(2*x)        
$$- \frac{4 \left(\sin{\left(2 x \right)} + \frac{\cos^{2}{\left(2 x \right)}}{\sin{\left(2 x \right)} - 1}\right)}{\sin{\left(2 x \right)} - 1}$$
The third derivative [src]
  /            2                        \         
  |       2*cos (2*x)        3*sin(2*x) |         
8*|-1 + ---------------- + -------------|*cos(2*x)
  |                    2   -1 + sin(2*x)|         
  \     (-1 + sin(2*x))                 /         
--------------------------------------------------
                  -1 + sin(2*x)                   
$$\frac{8 \left(-1 + \frac{3 \sin{\left(2 x \right)}}{\sin{\left(2 x \right)} - 1} + \frac{2 \cos^{2}{\left(2 x \right)}}{\left(\sin{\left(2 x \right)} - 1\right)^{2}}\right) \cos{\left(2 x \right)}}{\sin{\left(2 x \right)} - 1}$$
The graph
Derivative of ln(1-sin(2x))