Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of cosine is negative sine:
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$- 34 \sin{\left(x \right)} \cos^{33}{\left(x \right)}$$
The second derivative
[src]
32 / 2 2 \
34*cos (x)*\- cos (x) + 33*sin (x)/
$$34 \left(33 \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \cos^{32}{\left(x \right)}$$
The third derivative
[src]
31 / 2 2 \
136*cos (x)*\- 264*sin (x) + 25*cos (x)/*sin(x)
$$136 \left(- 264 \sin^{2}{\left(x \right)} + 25 \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} \cos^{31}{\left(x \right)}$$