Mister Exam

Other calculators

Derivative of (ln(5*x))/(2*x+3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(5*x)
--------
2*x + 3 
$$\frac{\log{\left(5 x \right)}}{2 x + 3}$$
log(5*x)/(2*x + 3)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
     1        2*log(5*x)
----------- - ----------
x*(2*x + 3)            2
              (2*x + 3) 
$$- \frac{2 \log{\left(5 x \right)}}{\left(2 x + 3\right)^{2}} + \frac{1}{x \left(2 x + 3\right)}$$
The second derivative [src]
  1         4        8*log(5*x)
- -- - ----------- + ----------
   2   x*(3 + 2*x)            2
  x                  (3 + 2*x) 
-------------------------------
            3 + 2*x            
$$\frac{\frac{8 \log{\left(5 x \right)}}{\left(2 x + 3\right)^{2}} - \frac{4}{x \left(2 x + 3\right)} - \frac{1}{x^{2}}}{2 x + 3}$$
The third derivative [src]
  /1    24*log(5*x)        3              12     \
2*|-- - ----------- + ------------ + ------------|
  | 3             3    2                        2|
  \x     (3 + 2*x)    x *(3 + 2*x)   x*(3 + 2*x) /
--------------------------------------------------
                     3 + 2*x                      
$$\frac{2 \left(- \frac{24 \log{\left(5 x \right)}}{\left(2 x + 3\right)^{3}} + \frac{12}{x \left(2 x + 3\right)^{2}} + \frac{3}{x^{2} \left(2 x + 3\right)} + \frac{1}{x^{3}}\right)}{2 x + 3}$$