Mister Exam

Other calculators

  • How to use it?

  • Derivative of:
  • Derivative of sin(x)^2 Derivative of sin(x)^2
  • Derivative of ln(4x) Derivative of ln(4x)
  • Derivative of (cos^2)x Derivative of (cos^2)x
  • Derivative of 5-3x Derivative of 5-3x
  • Identical expressions

  • ln(cos(3x))*tan^ two (3x)
  • ln( co sinus of e of (3x)) multiply by tangent of squared (3x)
  • ln( co sinus of e of (3x)) multiply by tangent of to the power of two (3x)
  • ln(cos(3x))*tan2(3x)
  • lncos3x*tan23x
  • ln(cos(3x))*tan²(3x)
  • ln(cos(3x))*tan to the power of 2(3x)
  • ln(cos(3x))tan^2(3x)
  • ln(cos(3x))tan2(3x)
  • lncos3xtan23x
  • lncos3xtan^23x

Derivative of ln(cos(3x))*tan^2(3x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
                 2     
log(cos(3*x))*tan (3*x)
$$\log{\left(\cos{\left(3 x \right)} \right)} \tan^{2}{\left(3 x \right)}$$
log(cos(3*x))*tan(3*x)^2
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result of the chain rule is:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        To find :

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        Now plug in to the quotient rule:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                                                2              
/         2     \                          3*tan (3*x)*sin(3*x)
\6 + 6*tan (3*x)/*log(cos(3*x))*tan(3*x) - --------------------
                                                 cos(3*x)      
$$\left(6 \tan^{2}{\left(3 x \right)} + 6\right) \log{\left(\cos{\left(3 x \right)} \right)} \tan{\left(3 x \right)} - \frac{3 \sin{\left(3 x \right)} \tan^{2}{\left(3 x \right)}}{\cos{\left(3 x \right)}}$$
The second derivative [src]
  /            /       2     \                                                         /       2     \                  \
  |     2      |    sin (3*x)|     /       2     \ /         2     \                 4*\1 + tan (3*x)/*sin(3*x)*tan(3*x)|
9*|- tan (3*x)*|1 + ---------| + 2*\1 + tan (3*x)/*\1 + 3*tan (3*x)/*log(cos(3*x)) - -----------------------------------|
  |            |       2     |                                                                     cos(3*x)             |
  \            \    cos (3*x)/                                                                                          /
$$9 \left(- \left(\frac{\sin^{2}{\left(3 x \right)}}{\cos^{2}{\left(3 x \right)}} + 1\right) \tan^{2}{\left(3 x \right)} + 2 \left(\tan^{2}{\left(3 x \right)} + 1\right) \left(3 \tan^{2}{\left(3 x \right)} + 1\right) \log{\left(\cos{\left(3 x \right)} \right)} - \frac{4 \left(\tan^{2}{\left(3 x \right)} + 1\right) \sin{\left(3 x \right)} \tan{\left(3 x \right)}}{\cos{\left(3 x \right)}}\right)$$
The third derivative [src]
   /                                                         /       2     \                                                                                                                     \
   |                                                  2      |    sin (3*x)|                                                                                                                     |
   |                                               tan (3*x)*|1 + ---------|*sin(3*x)                                                                                                            |
   |                    /       2     \                      |       2     |              /       2     \ /         2     \                                                                      |
   |    /       2     \ |    sin (3*x)|                      \    cos (3*x)/            3*\1 + tan (3*x)/*\1 + 3*tan (3*x)/*sin(3*x)     /       2     \ /         2     \                       |
54*|- 3*\1 + tan (3*x)/*|1 + ---------|*tan(3*x) - ---------------------------------- - -------------------------------------------- + 4*\1 + tan (3*x)/*\2 + 3*tan (3*x)/*log(cos(3*x))*tan(3*x)|
   |                    |       2     |                         cos(3*x)                                  cos(3*x)                                                                               |
   \                    \    cos (3*x)/                                                                                                                                                          /
$$54 \left(- 3 \left(\frac{\sin^{2}{\left(3 x \right)}}{\cos^{2}{\left(3 x \right)}} + 1\right) \left(\tan^{2}{\left(3 x \right)} + 1\right) \tan{\left(3 x \right)} - \frac{\left(\frac{\sin^{2}{\left(3 x \right)}}{\cos^{2}{\left(3 x \right)}} + 1\right) \sin{\left(3 x \right)} \tan^{2}{\left(3 x \right)}}{\cos{\left(3 x \right)}} - \frac{3 \left(\tan^{2}{\left(3 x \right)} + 1\right) \left(3 \tan^{2}{\left(3 x \right)} + 1\right) \sin{\left(3 x \right)}}{\cos{\left(3 x \right)}} + 4 \left(\tan^{2}{\left(3 x \right)} + 1\right) \left(3 \tan^{2}{\left(3 x \right)} + 2\right) \log{\left(\cos{\left(3 x \right)} \right)} \tan{\left(3 x \right)}\right)$$