Mister Exam

Other calculators


(ln(3x-4))^(1/2)

Derivative of (ln(3x-4))^(1/2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ______________
\/ log(3*x - 4) 
$$\sqrt{\log{\left(3 x - 4 \right)}}$$
sqrt(log(3*x - 4))
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
             3              
----------------------------
              ______________
2*(3*x - 4)*\/ log(3*x - 4) 
$$\frac{3}{2 \left(3 x - 4\right) \sqrt{\log{\left(3 x - 4 \right)}}}$$
The second derivative [src]
        /          1      \    
     -9*|2 + -------------|    
        \    log(-4 + 3*x)/    
-------------------------------
            2   _______________
4*(-4 + 3*x) *\/ log(-4 + 3*x) 
$$- \frac{9 \left(2 + \frac{1}{\log{\left(3 x - 4 \right)}}\right)}{4 \left(3 x - 4\right)^{2} \sqrt{\log{\left(3 x - 4 \right)}}}$$
The third derivative [src]
   /           3                 3        \
27*|1 + --------------- + ----------------|
   |    4*log(-4 + 3*x)        2          |
   \                      8*log (-4 + 3*x)/
-------------------------------------------
                 3   _______________       
       (-4 + 3*x) *\/ log(-4 + 3*x)        
$$\frac{27 \left(1 + \frac{3}{4 \log{\left(3 x - 4 \right)}} + \frac{3}{8 \log{\left(3 x - 4 \right)}^{2}}\right)}{\left(3 x - 4\right)^{3} \sqrt{\log{\left(3 x - 4 \right)}}}$$
The graph
Derivative of (ln(3x-4))^(1/2)