Mister Exam

You entered:

sin(3*x)/(x+1)

What you mean?

Derivative of sin(3*x)/(x+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(3*x)
--------
 x + 1  
$$\frac{\sin{\left(3 x \right)}}{x + 1}$$
d /sin(3*x)\
--|--------|
dx\ x + 1  /
$$\frac{d}{d x} \frac{\sin{\left(3 x \right)}}{x + 1}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
  sin(3*x)   3*cos(3*x)
- -------- + ----------
         2     x + 1   
  (x + 1)              
$$\frac{3 \cos{\left(3 x \right)}}{x + 1} - \frac{\sin{\left(3 x \right)}}{\left(x + 1\right)^{2}}$$
The second derivative [src]
              6*cos(3*x)   2*sin(3*x)
-9*sin(3*x) - ---------- + ----------
                1 + x              2 
                            (1 + x)  
-------------------------------------
                1 + x                
$$\frac{- 9 \sin{\left(3 x \right)} - \frac{6 \cos{\left(3 x \right)}}{x + 1} + \frac{2 \sin{\left(3 x \right)}}{\left(x + 1\right)^{2}}}{x + 1}$$
The third derivative [src]
  /              2*sin(3*x)   6*cos(3*x)   9*sin(3*x)\
3*|-9*cos(3*x) - ---------- + ---------- + ----------|
  |                      3            2      1 + x   |
  \               (1 + x)      (1 + x)               /
------------------------------------------------------
                        1 + x                         
$$\frac{3 \left(- 9 \cos{\left(3 x \right)} + \frac{9 \sin{\left(3 x \right)}}{x + 1} + \frac{6 \cos{\left(3 x \right)}}{\left(x + 1\right)^{2}} - \frac{2 \sin{\left(3 x \right)}}{\left(x + 1\right)^{3}}\right)}{x + 1}$$
The graph
Derivative of sin(3*x)/(x+1)