Mister Exam

Other calculators

Derivative of lgx-2*lg^2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
              2   
log(x) - 2*log (x)
2log(x)2+log(x)- 2 \log{\left(x \right)}^{2} + \log{\left(x \right)}
log(x) - 2*log(x)^2
Detail solution
  1. Differentiate 2log(x)2+log(x)- 2 \log{\left(x \right)}^{2} + \log{\left(x \right)} term by term:

    1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=log(x)u = \log{\left(x \right)}.

      2. Apply the power rule: u2u^{2} goes to 2u2 u

      3. Then, apply the chain rule. Multiply by ddxlog(x)\frac{d}{d x} \log{\left(x \right)}:

        1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

        The result of the chain rule is:

        2log(x)x\frac{2 \log{\left(x \right)}}{x}

      So, the result is: 4log(x)x- \frac{4 \log{\left(x \right)}}{x}

    The result is: 4log(x)x+1x- \frac{4 \log{\left(x \right)}}{x} + \frac{1}{x}

  2. Now simplify:

    14log(x)x\frac{1 - 4 \log{\left(x \right)}}{x}


The answer is:

14log(x)x\frac{1 - 4 \log{\left(x \right)}}{x}

The graph
02468-8-6-4-2-1010200-100
The first derivative [src]
1   4*log(x)
- - --------
x      x    
4log(x)x+1x- \frac{4 \log{\left(x \right)}}{x} + \frac{1}{x}
The second derivative [src]
-5 + 4*log(x)
-------------
       2     
      x      
4log(x)5x2\frac{4 \log{\left(x \right)} - 5}{x^{2}}
The third derivative [src]
2*(7 - 4*log(x))
----------------
        3       
       x        
2(74log(x))x3\frac{2 \left(7 - 4 \log{\left(x \right)}\right)}{x^{3}}