Mister Exam

Other calculators

Derivative of lg^2(x-2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2       
log (x - 2)
log(x2)2\log{\left(x - 2 \right)}^{2}
log(x - 2)^2
Detail solution
  1. Let u=log(x2)u = \log{\left(x - 2 \right)}.

  2. Apply the power rule: u2u^{2} goes to 2u2 u

  3. Then, apply the chain rule. Multiply by ddxlog(x2)\frac{d}{d x} \log{\left(x - 2 \right)}:

    1. Let u=x2u = x - 2.

    2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

    3. Then, apply the chain rule. Multiply by ddx(x2)\frac{d}{d x} \left(x - 2\right):

      1. Differentiate x2x - 2 term by term:

        1. Apply the power rule: xx goes to 11

        2. The derivative of the constant 2-2 is zero.

        The result is: 11

      The result of the chain rule is:

      1x2\frac{1}{x - 2}

    The result of the chain rule is:

    2log(x2)x2\frac{2 \log{\left(x - 2 \right)}}{x - 2}

  4. Now simplify:

    2log(x2)x2\frac{2 \log{\left(x - 2 \right)}}{x - 2}


The answer is:

2log(x2)x2\frac{2 \log{\left(x - 2 \right)}}{x - 2}

The graph
02468-8-6-4-2-1010-5050
The first derivative [src]
2*log(x - 2)
------------
   x - 2    
2log(x2)x2\frac{2 \log{\left(x - 2 \right)}}{x - 2}
The second derivative [src]
2*(1 - log(-2 + x))
-------------------
             2     
     (-2 + x)      
2(1log(x2))(x2)2\frac{2 \left(1 - \log{\left(x - 2 \right)}\right)}{\left(x - 2\right)^{2}}
The third derivative [src]
2*(-3 + 2*log(-2 + x))
----------------------
              3       
      (-2 + x)        
2(2log(x2)3)(x2)3\frac{2 \left(2 \log{\left(x - 2 \right)} - 3\right)}{\left(x - 2\right)^{3}}