Mister Exam

Other calculators


(4*x+1)/(x+3)

Derivative of (4*x+1)/(x+3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
4*x + 1
-------
 x + 3 
4x+1x+3\frac{4 x + 1}{x + 3}
(4*x + 1)/(x + 3)
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=4x+1f{\left(x \right)} = 4 x + 1 and g(x)=x+3g{\left(x \right)} = x + 3.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate 4x+14 x + 1 term by term:

      1. The derivative of the constant 11 is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 44

      The result is: 44

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate x+3x + 3 term by term:

      1. The derivative of the constant 33 is zero.

      2. Apply the power rule: xx goes to 11

      The result is: 11

    Now plug in to the quotient rule:

    11(x+3)2\frac{11}{\left(x + 3\right)^{2}}


The answer is:

11(x+3)2\frac{11}{\left(x + 3\right)^{2}}

The graph
02468-8-6-4-2-1010-25002500
The first derivative [src]
  4     4*x + 1 
----- - --------
x + 3          2
        (x + 3) 
4x+34x+1(x+3)2\frac{4}{x + 3} - \frac{4 x + 1}{\left(x + 3\right)^{2}}
The second derivative [src]
  /     1 + 4*x\
2*|-4 + -------|
  \      3 + x /
----------------
           2    
    (3 + x)     
2(4+4x+1x+3)(x+3)2\frac{2 \left(-4 + \frac{4 x + 1}{x + 3}\right)}{\left(x + 3\right)^{2}}
The third derivative [src]
  /    1 + 4*x\
6*|4 - -------|
  \     3 + x /
---------------
           3   
    (3 + x)    
6(44x+1x+3)(x+3)3\frac{6 \left(4 - \frac{4 x + 1}{x + 3}\right)}{\left(x + 3\right)^{3}}
The graph
Derivative of (4*x+1)/(x+3)