Mister Exam

Derivative of 5^6^x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 / x\
 \6 /
5    
$$5^{6^{x}}$$
5^(6^x)
Detail solution
  1. Let .

  2. Then, apply the chain rule. Multiply by :

    The result of the chain rule is:


The answer is:

The first derivative [src]
 / x\                 
 \6 /  x              
5    *6 *log(5)*log(6)
$$5^{6^{x}} 6^{x} \log{\left(5 \right)} \log{\left(6 \right)}$$
The second derivative [src]
 / x\                                  
 \6 /  x    2    /     x       \       
5    *6 *log (6)*\1 + 6 *log(5)/*log(5)
$$5^{6^{x}} 6^{x} \left(6^{x} \log{\left(5 \right)} + 1\right) \log{\left(5 \right)} \log{\left(6 \right)}^{2}$$
The third derivative [src]
 / x\                                                   
 \6 /  x    3    /     2*x    2         x       \       
5    *6 *log (6)*\1 + 6   *log (5) + 3*6 *log(5)/*log(5)
$$5^{6^{x}} 6^{x} \left(6^{2 x} \log{\left(5 \right)}^{2} + 3 \cdot 6^{x} \log{\left(5 \right)} + 1\right) \log{\left(5 \right)} \log{\left(6 \right)}^{3}$$