Detail solution
-
Differentiate term by term:
-
Let .
-
-
Then, apply the chain rule. Multiply by :
-
The derivative of sine is cosine:
The result of the chain rule is:
-
The derivative of a constant times a function is the constant times the derivative of the function.
-
The derivative of cosine is negative sine:
So, the result is:
The result is:
The answer is:
The first derivative
[src]
sin(x)
5 *cos(x)*log(5) + sin(x)
$$5^{\sin{\left(x \right)}} \log{\left(5 \right)} \cos{\left(x \right)} + \sin{\left(x \right)}$$
The second derivative
[src]
sin(x) 2 2 sin(x)
5 *cos (x)*log (5) - 5 *log(5)*sin(x) + cos(x)
$$- 5^{\sin{\left(x \right)}} \log{\left(5 \right)} \sin{\left(x \right)} + 5^{\sin{\left(x \right)}} \log{\left(5 \right)}^{2} \cos^{2}{\left(x \right)} + \cos{\left(x \right)}$$
The third derivative
[src]
sin(x) 3 3 sin(x) sin(x) 2
-sin(x) + 5 *cos (x)*log (5) - 5 *cos(x)*log(5) - 3*5 *log (5)*cos(x)*sin(x)
$$- 3 \cdot 5^{\sin{\left(x \right)}} \log{\left(5 \right)}^{2} \sin{\left(x \right)} \cos{\left(x \right)} + 5^{\sin{\left(x \right)}} \log{\left(5 \right)}^{3} \cos^{3}{\left(x \right)} - 5^{\sin{\left(x \right)}} \log{\left(5 \right)} \cos{\left(x \right)} - \sin{\left(x \right)}$$