Mister Exam

Other calculators

Derivative of 5^sinx-cosx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 sin(x)         
5       - cos(x)
$$5^{\sin{\left(x \right)}} - \cos{\left(x \right)}$$
5^sin(x) - cos(x)
Detail solution
  1. Differentiate term by term:

    1. Let .

    2. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    3. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of cosine is negative sine:

      So, the result is:

    The result is:


The answer is:

The graph
The first derivative [src]
 sin(x)                       
5      *cos(x)*log(5) + sin(x)
$$5^{\sin{\left(x \right)}} \log{\left(5 \right)} \cos{\left(x \right)} + \sin{\left(x \right)}$$
The second derivative [src]
 sin(x)    2       2       sin(x)                       
5      *cos (x)*log (5) - 5      *log(5)*sin(x) + cos(x)
$$- 5^{\sin{\left(x \right)}} \log{\left(5 \right)} \sin{\left(x \right)} + 5^{\sin{\left(x \right)}} \log{\left(5 \right)}^{2} \cos^{2}{\left(x \right)} + \cos{\left(x \right)}$$
The third derivative [src]
           sin(x)    3       3       sin(x)                    sin(x)    2                 
-sin(x) + 5      *cos (x)*log (5) - 5      *cos(x)*log(5) - 3*5      *log (5)*cos(x)*sin(x)
$$- 3 \cdot 5^{\sin{\left(x \right)}} \log{\left(5 \right)}^{2} \sin{\left(x \right)} \cos{\left(x \right)} + 5^{\sin{\left(x \right)}} \log{\left(5 \right)}^{3} \cos^{3}{\left(x \right)} - 5^{\sin{\left(x \right)}} \log{\left(5 \right)} \cos{\left(x \right)} - \sin{\left(x \right)}$$