Mister Exam

Other calculators


5/((x+lnx)^1/5)

Derivative of 5/((x+lnx)^1/5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
      5       
--------------
5 ____________
\/ x + log(x) 
$$\frac{5}{\sqrt[5]{x + \log{\left(x \right)}}}$$
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. Apply the power rule: goes to

          2. The derivative of is .

          The result is:

        The result of the chain rule is:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
     /1    1 \ 
  -5*|- + ---| 
     \5   5*x/ 
---------------
            6/5
(x + log(x))   
$$- \frac{5 \left(\frac{1}{5} + \frac{1}{5 x}\right)}{\left(x + \log{\left(x \right)}\right)^{\frac{6}{5}}}$$
The second derivative [src]
               2 
        /    1\  
      6*|1 + -|  
 5      \    x/  
 -- + ---------- 
  2   x + log(x) 
 x               
-----------------
              6/5
5*(x + log(x))   
$$\frac{\frac{6 \left(1 + \frac{1}{x}\right)^{2}}{x + \log{\left(x \right)}} + \frac{5}{x^{2}}}{5 \left(x + \log{\left(x \right)}\right)^{\frac{6}{5}}}$$
The third derivative [src]
   /                3                   \
   |         /    1\           /    1\  |
   |      33*|1 + -|        45*|1 + -|  |
   |25       \    x/           \    x/  |
-2*|-- + ------------- + ---------------|
   | 3               2    2             |
   \x    (x + log(x))    x *(x + log(x))/
-----------------------------------------
                           6/5           
            25*(x + log(x))              
$$- \frac{2 \left(\frac{33 \left(1 + \frac{1}{x}\right)^{3}}{\left(x + \log{\left(x \right)}\right)^{2}} + \frac{45 \left(1 + \frac{1}{x}\right)}{x^{2} \left(x + \log{\left(x \right)}\right)} + \frac{25}{x^{3}}\right)}{25 \left(x + \log{\left(x \right)}\right)^{\frac{6}{5}}}$$
The graph
Derivative of 5/((x+lnx)^1/5)