Mister Exam

Other calculators


exp(0.5*x*sqrt(x))

Derivative of exp(0.5*x*sqrt(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     ___
 x*\/ x 
 -------
    2   
e       
$$e^{\frac{\sqrt{x} x}{2}}$$
  /     ___\
  | x*\/ x |
  | -------|
d |    2   |
--\e       /
dx          
$$\frac{d}{d x} e^{\frac{\sqrt{x} x}{2}}$$
Detail solution
  1. Let .

  2. The derivative of is itself.

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the product rule:

        ; to find :

        1. Apply the power rule: goes to

        ; to find :

        1. Apply the power rule: goes to

        The result is:

      So, the result is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
          3/2
         x   
         ----
    ___   2  
3*\/ x *e    
-------------
      4      
$$\frac{3 \sqrt{x} e^{\frac{x^{\frac{3}{2}}}{2}}}{4}$$
The second derivative [src]
                  3/2
                 x   
                 ----
  /  2        \   2  
3*|----- + 3*x|*e    
  |  ___      |      
  \\/ x       /      
---------------------
          16         
$$\frac{3 \cdot \left(3 x + \frac{2}{\sqrt{x}}\right) e^{\frac{x^{\frac{3}{2}}}{2}}}{16}$$
The third derivative [src]
                         3/2
                        x   
                        ----
  /      4        3/2\   2  
3*|18 - ---- + 9*x   |*e    
  |      3/2         |      
  \     x            /      
----------------------------
             64             
$$\frac{3 \cdot \left(9 x^{\frac{3}{2}} + 18 - \frac{4}{x^{\frac{3}{2}}}\right) e^{\frac{x^{\frac{3}{2}}}{2}}}{64}$$
The graph
Derivative of exp(0.5*x*sqrt(x))