Apply the quotient rule, which is:
and .
To find :
Apply the power rule: goes to
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
3 ___
3*\/ x 1
- ---------- + ----------------
2 2/3
(3*x + 2) 3*x *(3*x + 2)
/ 3 ___ \
| 1 1 9*\/ x |
2*|- ------ - -------------- + ----------|
| 5/3 2/3 2|
\ 9*x x *(2 + 3*x) (2 + 3*x) /
------------------------------------------
2 + 3*x
/ 3 ___ \
| 5 1 81*\/ x 9 |
2*|------- + -------------- - ---------- + ---------------|
| 8/3 5/3 3 2/3 2|
\27*x x *(2 + 3*x) (2 + 3*x) x *(2 + 3*x) /
-----------------------------------------------------------
2 + 3*x