Mister Exam

Other calculators


x^(1/3)/(3*x+2)

Derivative of x^(1/3)/(3*x+2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 3 ___ 
 \/ x  
-------
3*x + 2
$$\frac{\sqrt[3]{x}}{3 x + 2}$$
x^(1/3)/(3*x + 2)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
     3 ___                     
   3*\/ x             1        
- ---------- + ----------------
           2      2/3          
  (3*x + 2)    3*x   *(3*x + 2)
$$- \frac{3 \sqrt[3]{x}}{\left(3 x + 2\right)^{2}} + \frac{1}{3 x^{\frac{2}{3}} \left(3 x + 2\right)}$$
The second derivative [src]
  /                               3 ___  \
  |    1            1           9*\/ x   |
2*|- ------ - -------------- + ----------|
  |     5/3    2/3                      2|
  \  9*x      x   *(2 + 3*x)   (2 + 3*x) /
------------------------------------------
                 2 + 3*x                  
$$\frac{2 \left(\frac{9 \sqrt[3]{x}}{\left(3 x + 2\right)^{2}} - \frac{1}{x^{\frac{2}{3}} \left(3 x + 2\right)} - \frac{1}{9 x^{\frac{5}{3}}}\right)}{3 x + 2}$$
The third derivative [src]
  /                               3 ___                   \
  |   5            1           81*\/ x            9       |
2*|------- + -------------- - ---------- + ---------------|
  |    8/3    5/3                      3    2/3          2|
  \27*x      x   *(2 + 3*x)   (2 + 3*x)    x   *(2 + 3*x) /
-----------------------------------------------------------
                          2 + 3*x                          
$$\frac{2 \left(- \frac{81 \sqrt[3]{x}}{\left(3 x + 2\right)^{3}} + \frac{9}{x^{\frac{2}{3}} \left(3 x + 2\right)^{2}} + \frac{1}{x^{\frac{5}{3}} \left(3 x + 2\right)} + \frac{5}{27 x^{\frac{8}{3}}}\right)}{3 x + 2}$$
The graph
Derivative of x^(1/3)/(3*x+2)