Apply the quotient rule, which is:
and .
To find :
Apply the power rule: goes to
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
3 ___ 3*\/ x 1 - ---------- + ---------------- 2 2/3 (3*x + 2) 3*x *(3*x + 2)
/ 3 ___ \ | 1 1 9*\/ x | 2*|- ------ - -------------- + ----------| | 5/3 2/3 2| \ 9*x x *(2 + 3*x) (2 + 3*x) / ------------------------------------------ 2 + 3*x
/ 3 ___ \ | 5 1 81*\/ x 9 | 2*|------- + -------------- - ---------- + ---------------| | 8/3 5/3 3 2/3 2| \27*x x *(2 + 3*x) (2 + 3*x) x *(2 + 3*x) / ----------------------------------------------------------- 2 + 3*x