x x e *e
exp(x)*exp(x)
Apply the product rule:
f(x)=exf{\left(x \right)} = e^{x}f(x)=ex; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}dxdf(x):
The derivative of exe^{x}ex is itself.
g(x)=exg{\left(x \right)} = e^{x}g(x)=ex; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}dxdg(x):
The result is: 2e2x2 e^{2 x}2e2x
The answer is:
2*x 2*e
2*x 4*e
2*x 8*e