Mister Exam

Derivative of exp(x)*exp(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 x  x
e *e 
exexe^{x} e^{x}
exp(x)*exp(x)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=exf{\left(x \right)} = e^{x}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. The derivative of exe^{x} is itself.

    g(x)=exg{\left(x \right)} = e^{x}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. The derivative of exe^{x} is itself.

    The result is: 2e2x2 e^{2 x}


The answer is:

2e2x2 e^{2 x}

The graph
02468-8-6-4-2-101001000000000
The first derivative [src]
   2*x
2*e   
2e2x2 e^{2 x}
The second derivative [src]
   2*x
4*e   
4e2x4 e^{2 x}
The third derivative [src]
   2*x
8*e   
8e2x8 e^{2 x}
The graph
Derivative of exp(x)*exp(x)