Mister Exam

Derivative of exp^x^-2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 1 
 --
  2
 x 
e  
$$e^{\frac{1}{x^{2}}}$$
  / 1 \
  | --|
  |  2|
d | x |
--\e  /
dx     
$$\frac{d}{d x} e^{\frac{1}{x^{2}}}$$
Detail solution
  1. Let .

  2. The derivative of is itself.

  3. Then, apply the chain rule. Multiply by :

    1. Apply the power rule: goes to

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
    1 
    --
     2
    x 
-2*e  
------
   3  
  x   
$$- \frac{2 e^{\frac{1}{x^{2}}}}{x^{3}}$$
The second derivative [src]
            1 
            --
             2
  /    2 \  x 
2*|3 + --|*e  
  |     2|    
  \    x /    
--------------
       4      
      x       
$$\frac{2 \cdot \left(3 + \frac{2}{x^{2}}\right) e^{\frac{1}{x^{2}}}}{x^{4}}$$
The third derivative [src]
                  1 
                  --
                   2
   /    2    9 \  x 
-4*|6 + -- + --|*e  
   |     4    2|    
   \    x    x /    
--------------------
          5         
         x          
$$- \frac{4 \cdot \left(6 + \frac{9}{x^{2}} + \frac{2}{x^{4}}\right) e^{\frac{1}{x^{2}}}}{x^{5}}$$
The graph
Derivative of exp^x^-2