Detail solution
-
Let .
-
The derivative of is itself.
-
Then, apply the chain rule. Multiply by :
-
Apply the product rule:
; to find :
-
Apply the power rule: goes to
; to find :
-
The derivative of cosine is negative sine:
The result is:
The result of the chain rule is:
The answer is:
The first derivative
[src]
x*cos(x)
(-x*sin(x) + cos(x))*e
$$\left(- x \sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x \cos{\left(x \right)}}$$
The second derivative
[src]
/ 2 \ x*cos(x)
\(-cos(x) + x*sin(x)) - 2*sin(x) - x*cos(x)/*e
$$\left(- x \cos{\left(x \right)} + \left(x \sin{\left(x \right)} - \cos{\left(x \right)}\right)^{2} - 2 \sin{\left(x \right)}\right) e^{x \cos{\left(x \right)}}$$
The third derivative
[src]
/ 3 \ x*cos(x)
\- (-cos(x) + x*sin(x)) - 3*cos(x) + x*sin(x) + 3*(-cos(x) + x*sin(x))*(2*sin(x) + x*cos(x))/*e
$$\left(- \left(x \sin{\left(x \right)} - \cos{\left(x \right)}\right)^{3} + x \sin{\left(x \right)} + 3 \left(x \sin{\left(x \right)} - \cos{\left(x \right)}\right) \left(x \cos{\left(x \right)} + 2 \sin{\left(x \right)}\right) - 3 \cos{\left(x \right)}\right) e^{x \cos{\left(x \right)}}$$