Mister Exam

Derivative of exp^(xcosx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 x*cos(x)
e        
$$e^{x \cos{\left(x \right)}}$$
d / x*cos(x)\
--\e        /
dx           
$$\frac{d}{d x} e^{x \cos{\left(x \right)}}$$
Detail solution
  1. Let .

  2. The derivative of is itself.

  3. Then, apply the chain rule. Multiply by :

    1. Apply the product rule:

      ; to find :

      1. Apply the power rule: goes to

      ; to find :

      1. The derivative of cosine is negative sine:

      The result is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
                      x*cos(x)
(-x*sin(x) + cos(x))*e        
$$\left(- x \sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x \cos{\left(x \right)}}$$
The second derivative [src]
/                    2                      \  x*cos(x)
\(-cos(x) + x*sin(x))  - 2*sin(x) - x*cos(x)/*e        
$$\left(- x \cos{\left(x \right)} + \left(x \sin{\left(x \right)} - \cos{\left(x \right)}\right)^{2} - 2 \sin{\left(x \right)}\right) e^{x \cos{\left(x \right)}}$$
The third derivative [src]
/                      3                                                                     \  x*cos(x)
\- (-cos(x) + x*sin(x))  - 3*cos(x) + x*sin(x) + 3*(-cos(x) + x*sin(x))*(2*sin(x) + x*cos(x))/*e        
$$\left(- \left(x \sin{\left(x \right)} - \cos{\left(x \right)}\right)^{3} + x \sin{\left(x \right)} + 3 \left(x \sin{\left(x \right)} - \cos{\left(x \right)}\right) \left(x \cos{\left(x \right)} + 2 \sin{\left(x \right)}\right) - 3 \cos{\left(x \right)}\right) e^{x \cos{\left(x \right)}}$$
The graph
Derivative of exp^(xcosx)