Mister Exam

Derivative of exp(3x)*cos(5x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 3*x         
e   *cos(5*x)
e3xcos(5x)e^{3 x} \cos{\left(5 x \right)}
exp(3*x)*cos(5*x)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=e3xf{\left(x \right)} = e^{3 x}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=3xu = 3 x.

    2. The derivative of eue^{u} is itself.

    3. Then, apply the chain rule. Multiply by ddx3x\frac{d}{d x} 3 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 33

      The result of the chain rule is:

      3e3x3 e^{3 x}

    g(x)=cos(5x)g{\left(x \right)} = \cos{\left(5 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=5xu = 5 x.

    2. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 55

      The result of the chain rule is:

      5sin(5x)- 5 \sin{\left(5 x \right)}

    The result is: 5e3xsin(5x)+3e3xcos(5x)- 5 e^{3 x} \sin{\left(5 x \right)} + 3 e^{3 x} \cos{\left(5 x \right)}

  2. Now simplify:

    (5sin(5x)+3cos(5x))e3x\left(- 5 \sin{\left(5 x \right)} + 3 \cos{\left(5 x \right)}\right) e^{3 x}


The answer is:

(5sin(5x)+3cos(5x))e3x\left(- 5 \sin{\left(5 x \right)} + 3 \cos{\left(5 x \right)}\right) e^{3 x}

The graph
02468-8-6-4-2-1010-5000000000000050000000000000
The first derivative [src]
     3*x                        3*x
- 5*e   *sin(5*x) + 3*cos(5*x)*e   
5e3xsin(5x)+3e3xcos(5x)- 5 e^{3 x} \sin{\left(5 x \right)} + 3 e^{3 x} \cos{\left(5 x \right)}
The second derivative [src]
                               3*x
-2*(8*cos(5*x) + 15*sin(5*x))*e   
2(15sin(5x)+8cos(5x))e3x- 2 \left(15 \sin{\left(5 x \right)} + 8 \cos{\left(5 x \right)}\right) e^{3 x}
The third derivative [src]
                               3*x
-2*(5*sin(5*x) + 99*cos(5*x))*e   
2(5sin(5x)+99cos(5x))e3x- 2 \left(5 \sin{\left(5 x \right)} + 99 \cos{\left(5 x \right)}\right) e^{3 x}