Mister Exam

Other calculators


11^(x^2+5x+14)

Derivative of 11^(x^2+5x+14)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2           
  x  + 5*x + 14
11             
$$11^{\left(x^{2} + 5 x\right) + 14}$$
11^(x^2 + 5*x + 14)
Detail solution
  1. Let .

  2. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      2. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  3. Now simplify:


The answer is:

The graph
The first derivative [src]
   2                             
  x  + 5*x + 14                  
11             *(5 + 2*x)*log(11)
$$11^{\left(x^{2} + 5 x\right) + 14} \left(2 x + 5\right) \log{\left(11 \right)}$$
The second derivative [src]
                  x*(5 + x) /             2        \        
379749833583241*11         *\2 + (5 + 2*x) *log(11)/*log(11)
$$379749833583241 \cdot 11^{x \left(x + 5\right)} \left(\left(2 x + 5\right)^{2} \log{\left(11 \right)} + 2\right) \log{\left(11 \right)}$$
The third derivative [src]
                  x*(5 + x)    2               /             2        \
379749833583241*11         *log (11)*(5 + 2*x)*\6 + (5 + 2*x) *log(11)/
$$379749833583241 \cdot 11^{x \left(x + 5\right)} \left(2 x + 5\right) \left(\left(2 x + 5\right)^{2} \log{\left(11 \right)} + 6\right) \log{\left(11 \right)}^{2}$$
The graph
Derivative of 11^(x^2+5x+14)