Detail solution
-
Apply the product rule:
; to find :
-
Apply the product rule:
; to find :
-
The derivative of is itself.
; to find :
-
The derivative of sine is cosine:
The result is:
; to find :
-
Rewrite the function to be differentiated:
-
Apply the quotient rule, which is:
and .
To find :
-
The derivative of sine is cosine:
To find :
-
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
The result is:
Now simplify:
The answer is:
The first derivative
[src]
/ x x \ / 2 \ x
\cos(x)*e + e *sin(x)/*tan(x) + \1 + tan (x)/*e *sin(x)
$$\left(e^{x} \sin{\left(x \right)} + e^{x} \cos{\left(x \right)}\right) \tan{\left(x \right)} + \left(\tan^{2}{\left(x \right)} + 1\right) e^{x} \sin{\left(x \right)}$$
The second derivative
[src]
// 2 \ / 2 \ \ x
2*\\1 + tan (x)/*(cos(x) + sin(x)) + cos(x)*tan(x) + \1 + tan (x)/*sin(x)*tan(x)/*e
$$2 \left(\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) \left(\tan^{2}{\left(x \right)} + 1\right) + \left(\tan^{2}{\left(x \right)} + 1\right) \sin{\left(x \right)} \tan{\left(x \right)} + \cos{\left(x \right)} \tan{\left(x \right)}\right) e^{x}$$
The third derivative
[src]
/ / 2 \ / 2 \ / 2 \ / 2 \ \ x
2*\-(-cos(x) + sin(x))*tan(x) + 3*\1 + tan (x)/*cos(x) + \1 + tan (x)/*\1 + 3*tan (x)/*sin(x) + 3*\1 + tan (x)/*(cos(x) + sin(x))*tan(x)/*e
$$2 \left(- \left(\sin{\left(x \right)} - \cos{\left(x \right)}\right) \tan{\left(x \right)} + 3 \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) \sin{\left(x \right)} + 3 \left(\tan^{2}{\left(x \right)} + 1\right) \cos{\left(x \right)}\right) e^{x}$$