Mister Exam

Other calculators


e^(2*x)/x

Derivative of e^(2*x)/x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2*x
E   
----
 x  
e2xx\frac{e^{2 x}}{x}
E^(2*x)/x
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=e2xf{\left(x \right)} = e^{2 x} and g(x)=xg{\left(x \right)} = x.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=2xu = 2 x.

    2. The derivative of eue^{u} is itself.

    3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      The result of the chain rule is:

      2e2x2 e^{2 x}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Apply the power rule: xx goes to 11

    Now plug in to the quotient rule:

    2xe2xe2xx2\frac{2 x e^{2 x} - e^{2 x}}{x^{2}}

  2. Now simplify:

    (2x1)e2xx2\frac{\left(2 x - 1\right) e^{2 x}}{x^{2}}


The answer is:

(2x1)e2xx2\frac{\left(2 x - 1\right) e^{2 x}}{x^{2}}

The graph
02468-8-6-4-2-1010-100000000100000000
The first derivative [src]
   2*x      2*x
  e      2*e   
- ---- + ------
    2      x   
   x           
2e2xxe2xx2\frac{2 e^{2 x}}{x} - \frac{e^{2 x}}{x^{2}}
The second derivative [src]
  /    1    2\  2*x
2*|2 + -- - -|*e   
  |     2   x|     
  \    x     /     
-------------------
         x         
2(22x+1x2)e2xx\frac{2 \left(2 - \frac{2}{x} + \frac{1}{x^{2}}\right) e^{2 x}}{x}
The third derivative [src]
  /    6   3    6 \  2*x
2*|4 - - - -- + --|*e   
  |    x    3    2|     
  \        x    x /     
------------------------
           x            
2(46x+6x23x3)e2xx\frac{2 \left(4 - \frac{6}{x} + \frac{6}{x^{2}} - \frac{3}{x^{3}}\right) e^{2 x}}{x}
The graph
Derivative of e^(2*x)/x