Mister Exam

其他计算器

导数 e^(-2x)*cosx

函数 f() - 导数 -阶 在点
v

图像:

分段定义:

解答

You have entered [src]
 -2*x       
E    *cos(x)
$$e^{- 2 x} \cos{\left(x \right)}$$
E^(-2*x)*cos(x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of cosine is negative sine:

    To find :

    1. Let .

    2. The derivative of is itself.

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   -2*x                    -2*x
- e    *sin(x) - 2*cos(x)*e    
$$- e^{- 2 x} \sin{\left(x \right)} - 2 e^{- 2 x} \cos{\left(x \right)}$$
The second derivative [src]
                       -2*x
(3*cos(x) + 4*sin(x))*e    
$$\left(4 \sin{\left(x \right)} + 3 \cos{\left(x \right)}\right) e^{- 2 x}$$
The third derivative [src]
                         -2*x
-(2*cos(x) + 11*sin(x))*e    
$$- \left(11 \sin{\left(x \right)} + 2 \cos{\left(x \right)}\right) e^{- 2 x}$$