Detail solution
-
Let .
-
-
Then, apply the chain rule. Multiply by :
-
The derivative of cosine is negative sine:
The result of the chain rule is:
The answer is:
The first derivative
[src]
cos(x)
-atan (e)*log(atan(e))*sin(x)
$$- \log{\left(\operatorname{atan}{\left(e \right)} \right)} \sin{\left(x \right)} \operatorname{atan}^{\cos{\left(x \right)}}{\left(e \right)}$$
The second derivative
[src]
cos(x) / 2 \
atan (e)*\-cos(x) + sin (x)*log(atan(e))/*log(atan(e))
$$\left(\log{\left(\operatorname{atan}{\left(e \right)} \right)} \sin^{2}{\left(x \right)} - \cos{\left(x \right)}\right) \log{\left(\operatorname{atan}{\left(e \right)} \right)} \operatorname{atan}^{\cos{\left(x \right)}}{\left(e \right)}$$
The third derivative
[src]
cos(x) / 2 2 \
atan (e)*\1 - log (atan(e))*sin (x) + 3*cos(x)*log(atan(e))/*log(atan(e))*sin(x)
$$\left(- \log{\left(\operatorname{atan}{\left(e \right)} \right)}^{2} \sin^{2}{\left(x \right)} + 3 \log{\left(\operatorname{atan}{\left(e \right)} \right)} \cos{\left(x \right)} + 1\right) \log{\left(\operatorname{atan}{\left(e \right)} \right)} \sin{\left(x \right)} \operatorname{atan}^{\cos{\left(x \right)}}{\left(e \right)}$$