Mister Exam

Derivative of e^arcsin2/x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 asin(2)
E       
--------
   x    
$$\frac{e^{\operatorname{asin}{\left(2 \right)}}}{x}$$
E^asin(2)/x
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Apply the power rule: goes to

    So, the result is:


The answer is:

The graph
The first derivative [src]
  asin(2) 
-e        
----------
     2    
    x     
$$- \frac{e^{\operatorname{asin}{\left(2 \right)}}}{x^{2}}$$
The second derivative [src]
   asin(2)
2*e       
----------
     3    
    x     
$$\frac{2 e^{\operatorname{asin}{\left(2 \right)}}}{x^{3}}$$
The third derivative [src]
    asin(2)
-6*e       
-----------
      4    
     x     
$$- \frac{6 e^{\operatorname{asin}{\left(2 \right)}}}{x^{4}}$$