Mister Exam

Other calculators


e^(3*x)/x^2

Derivative of e^(3*x)/x^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 3*x
E   
----
  2 
 x  
$$\frac{e^{3 x}}{x^{2}}$$
E^(3*x)/x^2
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of is itself.

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    To find :

    1. Apply the power rule: goes to

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
     3*x      3*x
  2*e      3*e   
- ------ + ------
     3        2  
    x        x   
$$\frac{3 e^{3 x}}{x^{2}} - \frac{2 e^{3 x}}{x^{3}}$$
The second derivative [src]
  /    4   2 \  3*x
3*|3 - - + --|*e   
  |    x    2|     
  \        x /     
-------------------
          2        
         x         
$$\frac{3 \left(3 - \frac{4}{x} + \frac{2}{x^{2}}\right) e^{3 x}}{x^{2}}$$
The third derivative [src]
  /    18   8    18\  3*x
3*|9 - -- - -- + --|*e   
  |    x     3    2|     
  \         x    x /     
-------------------------
             2           
            x            
$$\frac{3 \left(9 - \frac{18}{x} + \frac{18}{x^{2}} - \frac{8}{x^{3}}\right) e^{3 x}}{x^{2}}$$
The graph
Derivative of e^(3*x)/x^2