Mister Exam

Diğer hesaplayıcılar

Türev (e^(5x))*(cos(4x))

Fonksiyon f() - türev -dereceden noktada
v

Grafik:

başlangıç bitiş

Parçalı tanımlı:

Çözüm

You have entered [src]
 5*x         
E   *cos(4*x)
$$e^{5 x} \cos{\left(4 x \right)}$$
E^(5*x)*cos(4*x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. The derivative of is itself.

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    ; to find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
     5*x                        5*x
- 4*e   *sin(4*x) + 5*cos(4*x)*e   
$$- 4 e^{5 x} \sin{\left(4 x \right)} + 5 e^{5 x} \cos{\left(4 x \right)}$$
The second derivative [src]
                             5*x
(-40*sin(4*x) + 9*cos(4*x))*e   
$$\left(- 40 \sin{\left(4 x \right)} + 9 \cos{\left(4 x \right)}\right) e^{5 x}$$
The third derivative [src]
                                5*x
-(115*cos(4*x) + 236*sin(4*x))*e   
$$- \left(236 \sin{\left(4 x \right)} + 115 \cos{\left(4 x \right)}\right) e^{5 x}$$