Mister Exam

Other calculators

Derivative of cx^2exp(2x)+cxexp(2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2  2*x        2*x
c*x *e    + c*x*e   
cxe2x+cx2e2xc x e^{2 x} + c x^{2} e^{2 x}
(c*x^2)*exp(2*x) + (c*x)*exp(2*x)
Detail solution
  1. Differentiate cxe2x+cx2e2xc x e^{2 x} + c x^{2} e^{2 x} term by term:

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=cx2f{\left(x \right)} = c x^{2}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: x2x^{2} goes to 2x2 x

        So, the result is: 2cx2 c x

      g(x)=e2xg{\left(x \right)} = e^{2 x}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Let u=2xu = 2 x.

      2. The derivative of eue^{u} is itself.

      3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 22

        The result of the chain rule is:

        2e2x2 e^{2 x}

      The result is: 2cx2e2x+2cxe2x2 c x^{2} e^{2 x} + 2 c x e^{2 x}

    2. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=cxf{\left(x \right)} = c x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: cc

      g(x)=e2xg{\left(x \right)} = e^{2 x}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Let u=2xu = 2 x.

      2. The derivative of eue^{u} is itself.

      3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 22

        The result of the chain rule is:

        2e2x2 e^{2 x}

      The result is: 2cxe2x+ce2x2 c x e^{2 x} + c e^{2 x}

    The result is: 2cx2e2x+4cxe2x+ce2x2 c x^{2} e^{2 x} + 4 c x e^{2 x} + c e^{2 x}

  2. Now simplify:

    c(2x2+4x+1)e2xc \left(2 x^{2} + 4 x + 1\right) e^{2 x}


The answer is:

c(2x2+4x+1)e2xc \left(2 x^{2} + 4 x + 1\right) e^{2 x}

The first derivative [src]
   2*x        2  2*x          2*x
c*e    + 2*c*x *e    + 4*c*x*e   
2cx2e2x+4cxe2x+ce2x2 c x^{2} e^{2 x} + 4 c x e^{2 x} + c e^{2 x}
The second derivative [src]
    /       2      \  2*x
2*c*\3 + 2*x  + 6*x/*e   
2c(2x2+6x+3)e2x2 c \left(2 x^{2} + 6 x + 3\right) e^{2 x}
The third derivative [src]
    /     2      \  2*x
8*c*\3 + x  + 4*x/*e   
8c(x2+4x+3)e2x8 c \left(x^{2} + 4 x + 3\right) e^{2 x}