Mister Exam

Other calculators


ctg(2x)/(1+sin^2(x))

Derivative of ctg(2x)/(1+sin^2(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  cot(2*x) 
-----------
       2   
1 + sin (x)
$$\frac{\cot{\left(2 x \right)}}{\sin^{2}{\left(x \right)} + 1}$$
d /  cot(2*x) \
--|-----------|
dx|       2   |
  \1 + sin (x)/
$$\frac{d}{d x} \frac{\cot{\left(2 x \right)}}{\sin^{2}{\left(x \right)} + 1}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. There are multiple ways to do this derivative.

      Method #1

      1. Rewrite the function to be differentiated:

      2. Let .

      3. Apply the power rule: goes to

      4. Then, apply the chain rule. Multiply by :

        1. Rewrite the function to be differentiated:

        2. Apply the quotient rule, which is:

          and .

          To find :

          1. Let .

          2. The derivative of sine is cosine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          To find :

          1. Let .

          2. The derivative of cosine is negative sine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          Now plug in to the quotient rule:

        The result of the chain rule is:

      Method #2

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        To find :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        Now plug in to the quotient rule:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Let .

      3. Apply the power rule: goes to

      4. Then, apply the chain rule. Multiply by :

        1. The derivative of sine is cosine:

        The result of the chain rule is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
          2                                
-2 - 2*cot (2*x)   2*cos(x)*cot(2*x)*sin(x)
---------------- - ------------------------
         2                           2     
  1 + sin (x)           /       2   \      
                        \1 + sin (x)/      
$$- \frac{2 \sin{\left(x \right)} \cos{\left(x \right)} \cot{\left(2 x \right)}}{\left(\sin^{2}{\left(x \right)} + 1\right)^{2}} + \frac{- 2 \cot^{2}{\left(2 x \right)} - 2}{\sin^{2}{\left(x \right)} + 1}$$
The second derivative [src]
  /                             /                         2       2   \                                           \
  |                             |   2         2      4*cos (x)*sin (x)|                                           |
  |                             |sin (x) - cos (x) + -----------------|*cot(2*x)                                  |
  |                             |                              2      |              /       2     \              |
  |  /       2     \            \                       1 + sin (x)   /            4*\1 + cot (2*x)/*cos(x)*sin(x)|
2*|4*\1 + cot (2*x)/*cot(2*x) + ------------------------------------------------ + -------------------------------|
  |                                                      2                                          2             |
  \                                               1 + sin (x)                                1 + sin (x)          /
-------------------------------------------------------------------------------------------------------------------
                                                           2                                                       
                                                    1 + sin (x)                                                    
$$\frac{2 \cdot \left(4 \left(\cot^{2}{\left(2 x \right)} + 1\right) \cot{\left(2 x \right)} + \frac{4 \left(\cot^{2}{\left(2 x \right)} + 1\right) \sin{\left(x \right)} \cos{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1} + \frac{\left(\frac{4 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1} + \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \cot{\left(2 x \right)}}{\sin^{2}{\left(x \right)} + 1}\right)}{\sin^{2}{\left(x \right)} + 1}$$
The third derivative [src]
  /                                                                                                                                                  /          2             2            2       2   \                       \
  |                                                          /                         2       2   \                                                 |     3*sin (x)     3*cos (x)    6*cos (x)*sin (x)|                       |
  |                                          /       2     \ |   2         2      4*cos (x)*sin (x)|                                               2*|1 - ----------- + ----------- - -----------------|*cos(x)*cot(2*x)*sin(x)|
  |                                        3*\1 + cot (2*x)/*|sin (x) - cos (x) + -----------------|                                                 |           2             2                     2 |                       |
  |                                                          |                              2      |      /       2     \                            |    1 + sin (x)   1 + sin (x)     /       2   \  |                       |
  |    /       2     \ /         2     \                     \                       1 + sin (x)   /   12*\1 + cot (2*x)/*cos(x)*cot(2*x)*sin(x)     \                                  \1 + sin (x)/  /                       |
4*|- 4*\1 + cot (2*x)/*\1 + 3*cot (2*x)/ - --------------------------------------------------------- - ----------------------------------------- + ----------------------------------------------------------------------------|
  |                                                                      2                                                   2                                                            2                                    |
  \                                                               1 + sin (x)                                         1 + sin (x)                                                  1 + sin (x)                                 /
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                 2                                                                                                              
                                                                                                          1 + sin (x)                                                                                                           
$$\frac{4 \left(- \frac{12 \left(\cot^{2}{\left(2 x \right)} + 1\right) \sin{\left(x \right)} \cos{\left(x \right)} \cot{\left(2 x \right)}}{\sin^{2}{\left(x \right)} + 1} + \frac{2 \cdot \left(- \frac{6 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}{\left(\sin^{2}{\left(x \right)} + 1\right)^{2}} - \frac{3 \sin^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1} + \frac{3 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1} + 1\right) \sin{\left(x \right)} \cos{\left(x \right)} \cot{\left(2 x \right)}}{\sin^{2}{\left(x \right)} + 1} - 4 \left(\cot^{2}{\left(2 x \right)} + 1\right) \left(3 \cot^{2}{\left(2 x \right)} + 1\right) - \frac{3 \left(\cot^{2}{\left(2 x \right)} + 1\right) \left(\frac{4 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1} + \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right)}{\sin^{2}{\left(x \right)} + 1}\right)}{\sin^{2}{\left(x \right)} + 1}$$
The graph
Derivative of ctg(2x)/(1+sin^2(x))