Mister Exam

Other calculators

Derivative of csc(x)-(1/3)csc^3x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
            3   
         csc (x)
csc(x) - -------
            3   
csc3(x)3+csc(x)- \frac{\csc^{3}{\left(x \right)}}{3} + \csc{\left(x \right)}
csc(x) - csc(x)^3/3
Detail solution
  1. Differentiate csc3(x)3+csc(x)- \frac{\csc^{3}{\left(x \right)}}{3} + \csc{\left(x \right)} term by term:

    1. Rewrite the function to be differentiated:

      csc(x)=1sin(x)\csc{\left(x \right)} = \frac{1}{\sin{\left(x \right)}}

    2. Let u=sin(x)u = \sin{\left(x \right)}.

    3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

    4. Then, apply the chain rule. Multiply by ddxsin(x)\frac{d}{d x} \sin{\left(x \right)}:

      1. The derivative of sine is cosine:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      The result of the chain rule is:

      cos(x)sin2(x)- \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}

    5. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=csc(x)u = \csc{\left(x \right)}.

      2. Apply the power rule: u3u^{3} goes to 3u23 u^{2}

      3. Then, apply the chain rule. Multiply by ddxcsc(x)\frac{d}{d x} \csc{\left(x \right)}:

        1. The derivative of cosecant is negative cosecant times cotangent:

          ddxcsc(x)=cot(x)csc(x)\frac{d}{d x} \csc{\left(x \right)} = - \cot{\left(x \right)} \csc{\left(x \right)}

        The result of the chain rule is:

        3cos(x)csc2(x)sin2(x)- \frac{3 \cos{\left(x \right)} \csc^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}

      So, the result is: cos(x)csc2(x)sin2(x)\frac{\cos{\left(x \right)} \csc^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}

    The result is: cos(x)csc2(x)sin2(x)cos(x)sin2(x)\frac{\cos{\left(x \right)} \csc^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} - \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}

  2. Now simplify:

    cos3(x)sin4(x)\frac{\cos^{3}{\left(x \right)}}{\sin^{4}{\left(x \right)}}


The answer is:

cos3(x)sin4(x)\frac{\cos^{3}{\left(x \right)}}{\sin^{4}{\left(x \right)}}

The graph
02468-8-6-4-2-1010-100000000100000000
The first derivative [src]
   3                          
csc (x)*cot(x) - cot(x)*csc(x)
cot(x)csc3(x)cot(x)csc(x)\cot{\left(x \right)} \csc^{3}{\left(x \right)} - \cot{\left(x \right)} \csc{\left(x \right)}
The second derivative [src]
/         2         2    /       2   \        2       2   \       
\1 + 2*cot (x) - csc (x)*\1 + cot (x)/ - 3*cot (x)*csc (x)/*csc(x)
((cot2(x)+1)csc2(x)3cot2(x)csc2(x)+2cot2(x)+1)csc(x)\left(- \left(\cot^{2}{\left(x \right)} + 1\right) \csc^{2}{\left(x \right)} - 3 \cot^{2}{\left(x \right)} \csc^{2}{\left(x \right)} + 2 \cot^{2}{\left(x \right)} + 1\right) \csc{\left(x \right)}
The third derivative [src]
/          2           2       2            2    /       2   \\              
\-5 - 6*cot (x) + 9*cot (x)*csc (x) + 11*csc (x)*\1 + cot (x)//*cot(x)*csc(x)
(11(cot2(x)+1)csc2(x)+9cot2(x)csc2(x)6cot2(x)5)cot(x)csc(x)\left(11 \left(\cot^{2}{\left(x \right)} + 1\right) \csc^{2}{\left(x \right)} + 9 \cot^{2}{\left(x \right)} \csc^{2}{\left(x \right)} - 6 \cot^{2}{\left(x \right)} - 5\right) \cot{\left(x \right)} \csc{\left(x \right)}