Mister Exam

Derivative of cot(x^3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 3\
cot\x /
cot(x3)\cot{\left(x^{3} \right)}
d /   / 3\\
--\cot\x //
dx         
ddxcot(x3)\frac{d}{d x} \cot{\left(x^{3} \right)}
Detail solution
  1. There are multiple ways to do this derivative.

    Method #1

    1. Rewrite the function to be differentiated:

      cot(x3)=1tan(x3)\cot{\left(x^{3} \right)} = \frac{1}{\tan{\left(x^{3} \right)}}

    2. Let u=tan(x3)u = \tan{\left(x^{3} \right)}.

    3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

    4. Then, apply the chain rule. Multiply by ddxtan(x3)\frac{d}{d x} \tan{\left(x^{3} \right)}:

      1. Rewrite the function to be differentiated:

        tan(x3)=sin(x3)cos(x3)\tan{\left(x^{3} \right)} = \frac{\sin{\left(x^{3} \right)}}{\cos{\left(x^{3} \right)}}

      2. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=sin(x3)f{\left(x \right)} = \sin{\left(x^{3} \right)} and g(x)=cos(x3)g{\left(x \right)} = \cos{\left(x^{3} \right)}.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. Let u=x3u = x^{3}.

        2. The derivative of sine is cosine:

          ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddxx3\frac{d}{d x} x^{3}:

          1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

          The result of the chain rule is:

          3x2cos(x3)3 x^{2} \cos{\left(x^{3} \right)}

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. Let u=x3u = x^{3}.

        2. The derivative of cosine is negative sine:

          dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddxx3\frac{d}{d x} x^{3}:

          1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

          The result of the chain rule is:

          3x2sin(x3)- 3 x^{2} \sin{\left(x^{3} \right)}

        Now plug in to the quotient rule:

        3x2sin2(x3)+3x2cos2(x3)cos2(x3)\frac{3 x^{2} \sin^{2}{\left(x^{3} \right)} + 3 x^{2} \cos^{2}{\left(x^{3} \right)}}{\cos^{2}{\left(x^{3} \right)}}

      The result of the chain rule is:

      3x2sin2(x3)+3x2cos2(x3)cos2(x3)tan2(x3)- \frac{3 x^{2} \sin^{2}{\left(x^{3} \right)} + 3 x^{2} \cos^{2}{\left(x^{3} \right)}}{\cos^{2}{\left(x^{3} \right)} \tan^{2}{\left(x^{3} \right)}}

    Method #2

    1. Rewrite the function to be differentiated:

      cot(x3)=cos(x3)sin(x3)\cot{\left(x^{3} \right)} = \frac{\cos{\left(x^{3} \right)}}{\sin{\left(x^{3} \right)}}

    2. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=cos(x3)f{\left(x \right)} = \cos{\left(x^{3} \right)} and g(x)=sin(x3)g{\left(x \right)} = \sin{\left(x^{3} \right)}.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Let u=x3u = x^{3}.

      2. The derivative of cosine is negative sine:

        dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddxx3\frac{d}{d x} x^{3}:

        1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

        The result of the chain rule is:

        3x2sin(x3)- 3 x^{2} \sin{\left(x^{3} \right)}

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Let u=x3u = x^{3}.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddxx3\frac{d}{d x} x^{3}:

        1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

        The result of the chain rule is:

        3x2cos(x3)3 x^{2} \cos{\left(x^{3} \right)}

      Now plug in to the quotient rule:

      3x2sin2(x3)3x2cos2(x3)sin2(x3)\frac{- 3 x^{2} \sin^{2}{\left(x^{3} \right)} - 3 x^{2} \cos^{2}{\left(x^{3} \right)}}{\sin^{2}{\left(x^{3} \right)}}

  2. Now simplify:

    3x2sin2(x3)- \frac{3 x^{2}}{\sin^{2}{\left(x^{3} \right)}}


The answer is:

3x2sin2(x3)- \frac{3 x^{2}}{\sin^{2}{\left(x^{3} \right)}}

The graph
02468-8-6-4-2-1010-50000005000000
The first derivative [src]
   2 /        2/ 3\\
3*x *\-1 - cot \x //
3x2(cot2(x3)1)3 x^{2} \left(- \cot^{2}{\left(x^{3} \right)} - 1\right)
The second derivative [src]
    /       2/ 3\\ /        3    / 3\\
6*x*\1 + cot \x //*\-1 + 3*x *cot\x //
6x(3x3cot(x3)1)(cot2(x3)+1)6 x \left(3 x^{3} \cot{\left(x^{3} \right)} - 1\right) \left(\cot^{2}{\left(x^{3} \right)} + 1\right)
The third derivative [src]
  /                                   2                                                               \
  |        2/ 3\      6 /       2/ 3\\        6    2/ 3\ /       2/ 3\\       3 /       2/ 3\\    / 3\|
6*\-1 - cot \x / - 9*x *\1 + cot \x //  - 18*x *cot \x /*\1 + cot \x // + 18*x *\1 + cot \x //*cot\x //
6(9x6(cot2(x3)+1)218x6(cot2(x3)+1)cot2(x3)+18x3(cot2(x3)+1)cot(x3)cot2(x3)1)6 \left(- 9 x^{6} \left(\cot^{2}{\left(x^{3} \right)} + 1\right)^{2} - 18 x^{6} \left(\cot^{2}{\left(x^{3} \right)} + 1\right) \cot^{2}{\left(x^{3} \right)} + 18 x^{3} \left(\cot^{2}{\left(x^{3} \right)} + 1\right) \cot{\left(x^{3} \right)} - \cot^{2}{\left(x^{3} \right)} - 1\right)
The graph
Derivative of cot(x^3)