sin(2*x) cos (x)
cos(x)^sin(2*x)
Don't know the steps in finding this derivative.
But the derivative is
The answer is:
sin(2*x) / sin(x)*sin(2*x)\
cos (x)*|2*cos(2*x)*log(cos(x)) - ---------------|
\ cos(x) /
/ 2 2 \
sin(2*x) |/ sin(x)*sin(2*x)\ sin (x)*sin(2*x) 4*cos(2*x)*sin(x)|
cos (x)*||2*cos(2*x)*log(cos(x)) - ---------------| - sin(2*x) - 4*log(cos(x))*sin(2*x) - ---------------- - -----------------|
|\ cos(x) / 2 cos(x) |
\ cos (x) /
/ 3 / 2 \ 2 3 \
sin(2*x) |/ sin(x)*sin(2*x)\ / sin(x)*sin(2*x)\ | sin (x)*sin(2*x) 4*cos(2*x)*sin(x) | 6*sin (x)*cos(2*x) 2*sin (x)*sin(2*x) 10*sin(x)*sin(2*x)|
cos (x)*||2*cos(2*x)*log(cos(x)) - ---------------| - 6*cos(2*x) - 8*cos(2*x)*log(cos(x)) - 3*|2*cos(2*x)*log(cos(x)) - ---------------|*|4*log(cos(x))*sin(2*x) + ---------------- + ----------------- + sin(2*x)| - ------------------ - ------------------ + ------------------|
|\ cos(x) / \ cos(x) / | 2 cos(x) | 2 3 cos(x) |
\ \ cos (x) / cos (x) cos (x) /