Mister Exam

Other calculators

Derivative of y=cos(x)/(3*x+5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 cos(x)
-------
3*x + 5
$$\frac{\cos{\left(x \right)}}{3 x + 5}$$
cos(x)/(3*x + 5)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of cosine is negative sine:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   sin(x)    3*cos(x) 
- ------- - ----------
  3*x + 5            2
            (3*x + 5) 
$$- \frac{\sin{\left(x \right)}}{3 x + 5} - \frac{3 \cos{\left(x \right)}}{\left(3 x + 5\right)^{2}}$$
The second derivative [src]
          6*sin(x)   18*cos(x) 
-cos(x) + -------- + ----------
          5 + 3*x             2
                     (5 + 3*x) 
-------------------------------
            5 + 3*x            
$$\frac{- \cos{\left(x \right)} + \frac{6 \sin{\left(x \right)}}{3 x + 5} + \frac{18 \cos{\left(x \right)}}{\left(3 x + 5\right)^{2}}}{3 x + 5}$$
The third derivative [src]
  162*cos(x)   54*sin(x)    9*cos(x)         
- ---------- - ---------- + -------- + sin(x)
           3            2   5 + 3*x          
  (5 + 3*x)    (5 + 3*x)                     
---------------------------------------------
                   5 + 3*x                   
$$\frac{\sin{\left(x \right)} + \frac{9 \cos{\left(x \right)}}{3 x + 5} - \frac{54 \sin{\left(x \right)}}{\left(3 x + 5\right)^{2}} - \frac{162 \cos{\left(x \right)}}{\left(3 x + 5\right)^{3}}}{3 x + 5}$$